Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, "Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents." arXiv, Mar. 08, 2022. Accessed: Apr. 27, 2023. [Online]. Available: <u>http://arxiv.org/abs/2201.07207</u>

Backgrounds

- Trained on large corpora of human-produced language, the LLMs contain a lot of world knowledge.
- If prompted appropriately, the learned world knowledge is enough for LLMs to effectively decompose high-level tasks into mid-level plans without any further training.
- However, the produced plans often cannot map precisely to admissible actions, given an interactive, embodied environments.

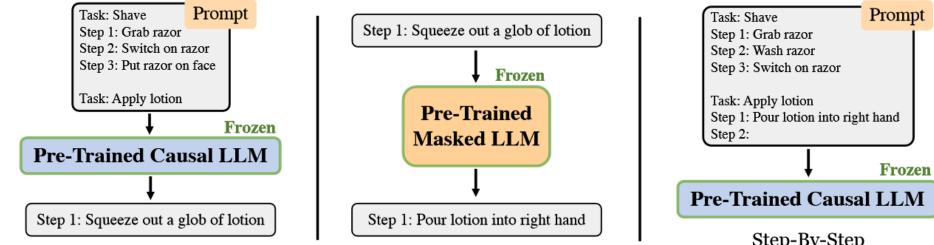
	GPT-3 175B	Translated GPT-3 175B
Human Task: Throw away paper Step 1: Walk to home office Step 2: Walk to desk Step 3: Find desk Step 4: Turn to desk	Task: Throw away paper Step 1: Walk to home office Step 2: Walk to wastebasket Step 3: Find wastebasket Step 4: Grab wastebasket Step 5: Walk to desk Step 6: Drop paper in wastebasket	Task: Throw away paper Step 1: Walk to home office Step 2: Walk to table Step 3: Find table Step 4: Turn to table Step 5: Find paper Step 6: Grab paper
Step 5: Find chair Step 6: Sit on chair Step 7: Find check Step 8: Grab check Step 9: Squeeze check	Codex 12B Task: Brush teeth Step 1: Walk to bathroom Step 2: Walk to sink	Step 7: Walk to trashcan Step 8: Open trashcan Step 9: Put paper on trashcan Step 10: Close trashcan
Step 10: Stand up Step 11: Walk to trashcan Step 12: Put check on trashcan	Step 2: Walk to sink Step 3: Find toothbrush Step 4: Pick up toothbrush Step 5: Put toothbrush in mouth Step 6: Move brush around mouth	Translated Codex 12B Task: Brush teeth Step 1: Walk to bathroom
GPT-2 1.5B Task: Brush teeth Step 1: Go to bathroom	for two minutes Step 7: Spit out toothpaste and brush into sink Step 8: Turn on water in sink and	Step 2: Open door Step 3: Walk to sink Step 4: Put pot on sink Step 5: Put brush on toothbrush Step 6: Turn to toothpaste
ve,	rinse brush for one minute Step 9: Turn off water in sink and return brush to cupboard	Step 7: Put toothpaste on toothbrush Step 8: Put teeth on toothbrush

Evaluated Environment: Virtual Home

- Simulator for activities in a household
- Pattern of Actions:
 - [action] (arg) (idx)
 - 42 atomic actions, such as "walk" and "open"
 - arg for specifying an interaction (objects or rooms)
 - idx to specifying the exact arg (multiple instances of the same object class)
- Tasks:
 - 292 distinct high-level tasks
 - 88 tasks for evaluation
 - 204 tasks as demonstration set

[WALK] (living_room)(1)
[WALK] (television)(1)
[FIND] (television)(1)
[SWITCHON] (television)(1)
[FIND] (sofa)(1)
[SIT] (sofa)(1)
[TURNTO] (television)(1)
[WATCH] (television)(1)

- 1. Prompt the LLM with a task example that is similar to the query task.
- 2. Map the model' s output phrases to the most semantically-similar admissible action (RoBERTa)
- 3. Replace the output of the model with the admissible action and generate the whole plan autoregressively.



Zero-Shot Planning via Causal LLM

Translation to Admissible Action

Step-By-Step Autoregressive Generation

Algorithm 1: Generating Action Plans from Pre-Trained Language Models **Notation Summary:** LM_P : text completion language model (also referred as **Planning LM**) LM_T : text embedding language model (also referred as **Translation LM**) $\{(T_i, E_i)\}_{i=1}^N$: demonstration set, where T is task name and E is example plan for T \hat{C} : cosine similarity function P: mean token log probability under LM_P **Input:** query task name Q, e.g. "make breakfast" Output: action plan consisting of admissible env actions, e.g. "open fridge" Extract most similar example (T^*, E^*) whose T^* maximizes $C(LM_T(T), LM_T(Q))$ Initialize prompt with $(T^* + E^* + Q)$ while max step is not reached do Sample LM_P with current prompt to obtain k single-step action phrases for each sample \hat{a} and each admissible env action a_e do Calculate ranking score by $C(LM_T(\hat{a}), LM_T(a_e)) + \beta \cdot P(\hat{a})$ end for Append highest-scoring env action a_e^* to prompt Append a_e^* to output if > 50% samples are 0-length or highest score $< \epsilon$ then break end if end while

$$C(f(\hat{a}), f(a_e)) := \frac{f(\hat{a}) \cdot f(a_e)}{\|f(\hat{a})\| \|f(a_e)\|}$$

where f is an embedding function.

$$\underset{a_e}{\operatorname{argmax}} \left[\max_{\hat{a}} C(f(\hat{a}), f(a_e)) + \beta \cdot P_{\theta}(\hat{a}) \right]$$

where β is a weighting coefficient.

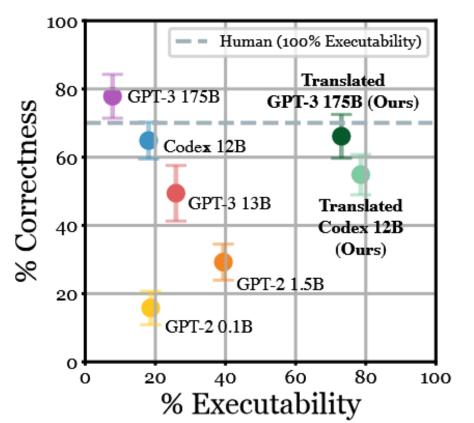
Experiments

Metrics

- 1. Executability: whether the action plan is valid for the environment.
- 2. Correctness: evaluation of 10 humans
- 3. LCS: the longest common subsequence between human annotations and LLM outputs

Language Model	Executability	LCS	Correctness
Vanilla GPT-2 117M	18.66%	3.19%	15.81% (4.90%)
Vanilla GPT-2 1.5B	39.40%	7.78%	29.25% (5.28%)
Vanilla Codex 2.5B	17.62%	15.57%	63.08% (7.12%)
Vanilla GPT-Neo 2.7B	29.92%	11.52%	65.29% (9.08%)
Vanilla Codex 12B	18.07%	16.97%	64.87% (5.41%)
Vanilla GPT-3 13B	25.87%	13.40%	49.44% (8.14%)
Vanilla GPT-3 175B	7.79%	17.82%	77.86% (6.42%)
Human	100.00%	N/A	70.05% (5.44%)
Fine-tuned GPT-3 13B	66.07%	34.08%	64.92% (5.96%)
Our Final Methods			
Translated Codex 12B	78.57%	24.72%	54.88% (5.90%)
Translated GPT-3 175B	73.05%	24.09%	66.13% (8.38%)

Table 1: Human-evaluated correctness and evaluation results in VirtualHome. Although action plans generated by large language models can match or even surpass human-written plans in correctness measure, they are rarely executable. By translating the naive action plans, we show an important step towards grounding LLMs in embodied environments, but we observe room to achieve this without trading executability for correctness. We also observe a failure mode among smaller models that lead to high executability. For correctness measure, standard error of the mean across 10 human annotators is reported in the parenthesis.



Experiments

Summary

- 1. Actions generated by vanilla LLMs are generally not very executable. While the proposed method improves the executability significantly.
- 2. For smaller vanilla LLMs
 - a. Executability anomaly
 - Ignoring the queried task and repeating the prompts.
 - b. Correctness anomaly
 - Generating shorter plans through ignoring common-sense actions
 - Task rephrasing
- 3. Source of Errors
 - a. Translation LM fails to map compounded instructions to a succinct admissible action.
 - b. Generated action plans stop too early.

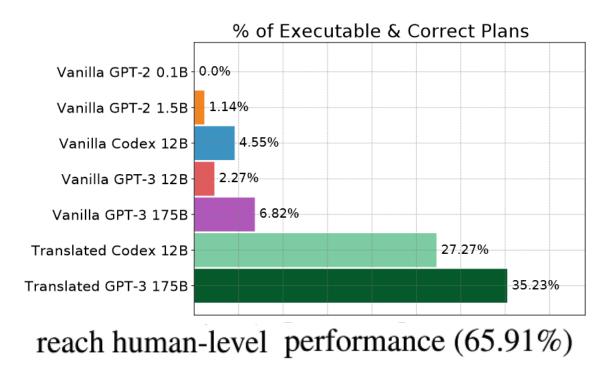
Language Model	Executability	LCS	Correctness
Vanilla GPT-2 117M	18.66%	3.19%	15.81% (4.90%)
Vanilla GPT-2 1.5B	39.40%	7.78%	29.25% (5.28%)
Vanilla Codex 2.5B	17.62%	15.57%	63.08% (7.12%)
Vanilla GPT-Neo 2.7B	29.92%	11.52%	65.29% (9.08%)
Vanilla Codex 12B	18.07%	16.97%	64.87% (5.41%)
Vanilla GPT-3 13B	25.87%	13.40%	49.44% (8.14%)
Vanilla GPT-3 175B	7.79%	17.82%	77.86% (6.42%)
Human	100.00%	N/A	70.05% (5.44%)
Fine-tuned GPT-3 13B	66.07%	34.08%	64.92% (5.96%)
Our Final Methods			
Translated Codex 12B	78.57%	24.72%	54.88% (5.90%)
Translated GPT-3 175B	73.05%	24.09%	66.13% (8.38%)

Table 1: Human-evaluated correctness and evaluation results in VirtualHome. Although action plans generated by large language models can match or even surpass human-written plans in correctness measure, they are rarely executable. By translating the naive action plans, we show an important step towards grounding LLMs in embodied environments, but we observe room to achieve this without trading executability for correctness. We also observe a failure mode among smaller models that lead to high executability. For correctness measure, standard error of the mean across 10 human annotators is reported in the parenthesis.

Ablation & Analysis

Methods	Executability	LCS
Translated Codex 12B	78.57%	24.72%
- w/o Action Translation	31.49%	22.53%
- w/o Dynamic Example	50.86%	22.84%
- w/o Trajectory Correction	55.19%	24.43%
Translated GPT-3 175B	73.05%	24.09%
- w/o Action Translation	36.04%	24.31%
- w/o Dynamic Example	60.82%	22.92%
- w/o Trajectory Correction	40.10%	24.98%

Table 2: Ablation of three proposed techniques.



Ablation & Analysis

Translation LM	Parameter Count	Executability	LCS
CODEX 12B AS PLANNING LM			
Avg. GloVe embeddings	-	46.92%	9.71%
Sentence Bert (base)	110M	73.21%	24.10%
Sentence Bert (large)	340M	75.16%	20.79%
Sentence RoBERTa (base)	125M	74.35%	22.82%
Sentence RoBERTa (large)	325M	78.57%	24.72%
GPT-3 175B AS PLANNING LM			
Avg. GloVe embeddings	-	47.40%	12.16%
Sentence Bert (base)	110M	77.60%	24.49%
Sentence Bert (large)	340M	67.86%	21.24%
Sentence RoBERTa (base)	125M	72.73%	23.64%
Sentence RoBERTa (large)	325M	73.05%	24.09%

Table 3: Effect of different Translation LMs on executability and LCS.

Discussion

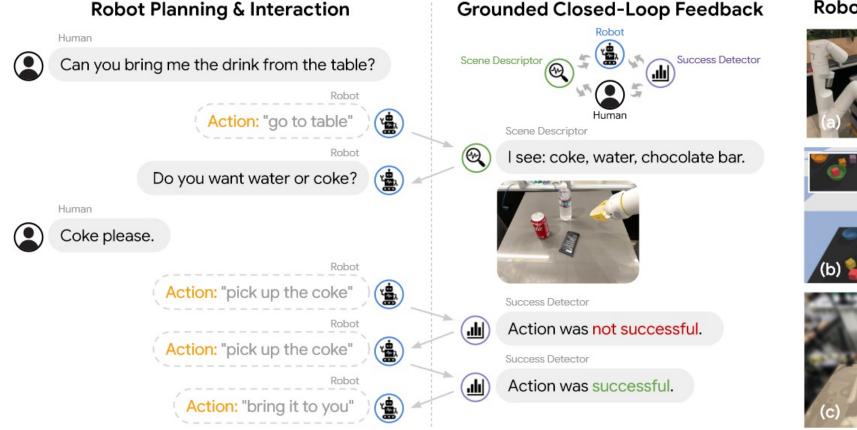
- One possible way to finish a high-level task
 - 1. Dynamic Example (choose a similar task as the prompt example)
 - 2. Action Translation (map the ambiguous step-by-step action to a valid one)
 - 3. Autoregressive Trajectory Correction
- How to find a similar task?
 - Based on the similarity of two embedding vectors
 - ...
- Is there a better way for action translation?
 - Similarity of embeddings
 - ...
- Autoregressive action generation is slow.

Inner Monologue: Embodied Reasoning through Planning with Language Models

W. Huang *et al.*, "Inner Monologue: Embodied Reasoning through Planning with Language Models." arXiv, Jul. 12, 2022. Accessed: Feb. 14, 2023. [Online]. Available: <u>http://arxiv.org/abs/2207.05608</u>

Backgrounds

- Intelligent and flexible embodied interaction requires
 - 1. A large skill set
 - 2. Sequence skills needed for long horizon tasks
 - 3. Percept the environment and generate feedbacks (either after or in the execution of skills)
- Existing works involves
 - Using language models as planners
 - Incorporating multimodal-informed perception through language
- This work:
 - plan with language, execute with additional embodied feedbacks.



Robot Environments

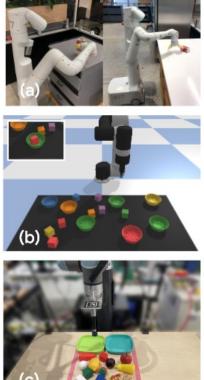
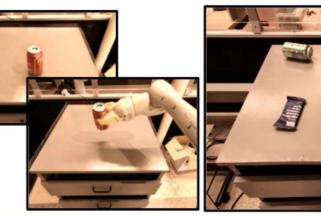


Figure 1: Inner Monologue enables grounded closed-loop feedback for robot planning with large language models by leveraging a collection of perception models (e.g., scene descriptors and success detectors) in tandem with pretrained language-conditioned robot skills. Experiments show our system can reason and replan to accomplish complex long-horizon tasks for (a) mobile manipulation and (b,c) tabletop manipulation in both simulated and real settings.

Source of Feedbacks

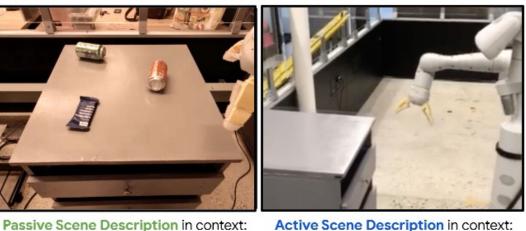
- Success Detection
 - Whether the last skill execution was successful.
- Passive Scene Description 2.
 - Description of scene feedbacks that are consistently provided with some structure
- 3. Active Scene Description
 - Providing answers to the questions of the LLM •



Success Detection in context

Robot Action: Go to table Scene: lime soda, coke, energy bar Robot Action: pick up energy bar

Robot Action: Go to drawers Robot Ask: Is the drawer open? Human: The drawer is closed. Robot Action: Open the drawer



Active Scene Description in context:

Simulated Tabletop Rearrangement

				+LLM	+Inner Monologue	
	Tasks	CLIPort	+oracle	Object	Object + Success	Object + Scene
	"Pick and place"	24.0%	74.0%	80.0%	90.0%	94.0%
	"Stack all the blocks"	2.0%	32.0%	4.0%	10.0%	26.0%
Seen Tasks	"Put all the blocks on the [x] corner/side"	2.0%	32.0%	30.0%	28.0%	30.0%
	"Put all the blocks in the [x] bowl"	32.0%	94.0%	52.0%	46.0%	56.0%
	"Put all the blocks in different corners"	0.0%	0.0%	20.0%	20.0%	26.0%
	"Put the blocks in their matching bowls"	0.0%	0.0%	56.0%	70.0%	82.0%
Unseen Tasks	"Put the blocks on mismatched bowls"	0.0%	0.0%	62.0%	76.0%	86.0%
	"Stack all the blocks on the [x] corner/side"	0.0%	0.0%	0.0%	4.0%	6.0%

Table 1: Success rates for various methods, averaged across 50 episodes in Ravens-based environment with test-time disturbances. CLIPort + oracle indicates that CLIPort was provided a "termination" oracle. Although CLIPort can receive visual feedback from the environment, we show that LLM-informed feedback can effectively enable the planner to retry/replan in the presence of failures, while enjoying the generalization benefits of LLMs to unseen tasks.

CLIPort(baseline)

A multi-task CLIPort policy trained on long-horizon task instructions

LLM Planner

InstructGPT

Executor

a pre-trained languageconditioned pick-and-place primitive



Robot: Pick up red block and place it in yellow bowl.

Task-Progress Scene Description

Success Detection

Real-World Tabletop Rearrangement

	LLM	LLM +Inner Monologue			
Task Family	Object	Object	Success	Object + Success	
Finish 3-block stacking	20%	40%	40%	100%	
Sort fruits from bottles	20%	50%	40%	80%	
Total	20%	45%	40%	90%	

LLM Planner

• InstructGPT

Executor

 MDETR for objection detection, LLM for parsing language command, a scripted suction-based picking and placing primitives for execution

Object Recognition (w/ Potential Occlusion)

Success Detection

Real-World Mobile Manipulator in a Kitchen Setting

		+Inner Monologue		
Task Family	SayCan	Success	Object + Success	
No Disturbances				
Manipulation	50.0%	62.5%	75.0%	
Mobile Manipulation	50.0%	50.0%	75.0%	
Drawers	83.3%	83.3%	100.0%	
With Disturbances				
Manipulation	12.5%	25.0%	33.3%	
Mobile Manipulation	0.0%	25.0%	75.0%	
Drawers	0.0%	44.4%	44.4%	
Total	30.8%	48.7%	60.4%	

Table 3: Averaged success rate across 120 evaluations on several task families in our real-world mobile manipulation environment. We consider a standard setting and adversarial setting with external human disturbances. In all cases, LLM-informed embodied feedback is shown to be effective in improving robustness of the system, especially when low-level policies are prone to failures.

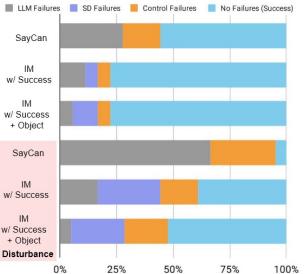


Figure 4: Failure causes on 120 evaluations. When disturbances are added (red), only the Inner Monologue variants consistently complete the instructions.

SayCan(baseline)

LLM Planner

• PALM

Executor

• pre-trained control policies for relevant skills in the scene

Object Recognition

Success Detection

Pipelines for LLM & Robotic Control

