Language Models as Zero-

Shot Planners:

-xtracting

Acticzhab\e Knowledge for

-mbodied Agents

W. Huang, P. Abbeel, D. Pathak, and |. Mordatch, “Language
Models as Zero-Shot Planners: Extracting Actionable Knowledge for
Embodied Agents.” arXiv, Mar. 08, 2022. Accessed: Apr. 27, 2023.

[Online]. Available: http://arxiv.org/abs/2201.07207

http://arxiv.org/abs/2201.07207

Backgrounds

Trained on large corpora of human-produced
language, the LLMs contain a lot of world
knowledge.

If prompted appropriately, the learned world
knowledge is enough for LLMs to effectively
decompose high-level tasks into mid-level plans
without any further training.

However, the produced plans often cannot map
precisely to admissible actions, given an interactive,
embodied environments.

Human

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to desk

Step 3: Find desk

Step 4: Turn to desk

Step 5: Find chair

Step 6: Sit on chair

Step 7: Find check

Step 8: Grab check

Step 9: Squeeze check

Step 10: Stand up

Step 11: Walk to trashcan
Step 12: Put check on trashcan

GPT-2 1.5B

Task: Brush teeth
Step 1: Go to bathroom

GPT-3 175B

Translated GPT-3 175B

Task: Throw away paper

Step 1: Walk to home office

Step 2: Walk to wastebasket

Step 3: Find wastebasket

Step 4: Grab wastebasket

Step 5: Walk to desk

Step 6: Drop paper in wastebasket

Codex 12B

Task: Brush teeth

Step 1: Walk to bathroom

Step 2: Walk to sink

Step 3: Find toothbrush

Step 4: Pick up toothbrush

Step 5: Put toothbrush in mouth

Step 6: Move brush around mouth
for two minutes

Step 7: Spit out toothpaste and
brush into sink

Step 8: Turn on water in sink and
rinse brush for one minute

Step 9: Turn off water in sink and
return brush to cupboard

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to table

Step 3: Find table

Step 4: Turn to table

Step 5: Find paper

Step 6: Grab paper

Step 7: Walk to trashcan
Step 8: Open trashcan

Step 9: Put paper on trashcan
Step 10: Close trashcan

Translated Codex 12B

Task: Brush teeth

Step 1: Walk to bathroom

Step 2: Open door

Step 3: Walk to sink

Step 4: Put pot on sink

Step 5: Put brush on toothbrush
Step 6: Turn to toothpaste

Step 7: Put toothpaste on toothbrush
Step 8: Put teeth on toothbrush

Evaluated Environment: Virtual Home

Simulator for activities in a household
Pattern of Actions:

[action] (arg) (idx)

42 atomic actions, such as “walk”™ and
‘open”

arg for specifying an interaction (objects

Or rooms)

IdX to specitying the exact arg (multiple

Instances of the same object class)

Tasks:

292 distinct high-level tasks
88 tasks for evaluation
204 tasks as demonstration set

thualHome

A Multi-Agent Household Simulator

[WALK] (living_room) (1
[WALK] (television)()
[FIND] (television) (1)
[SWITCHON] (television) (1)
[FIND] (sofa) (1)

[SIT] (sofa) (1)

[TURNTO] (television) (1)
[WATCH] (television) (1)

Methods

1. Prompt the LLM with a task example that is similar to the query task.
2. Map the model’ s output phrases to the most semantically-similar admissible action (RoOBERTa)

3. Replace the output of the model with the admissible action and generate the whole plan
autoregressively.

[Task: Shave Prompt - (Task: Shave Prompt
Step 1: Grab razor [Step 1: Squeeze out a glob of lotion] Step 1: Grab razor
Step 2: Switch on razor Step 2: Wash razor
Step 3: Put razor on face l F Step 3: Switch on razor
rozen
LTask: Apply lotion . Task: Apply lotion
‘ ¥ Pre-Trained Step 1: Pour lotion into right hand
rozen :
: Masked LLM Step 2: J
Pre-Trained Causal LLM 1
1 Frozen
1 Pre-Trained Causal LLM
[Step 1: Squeeze out a glob of lotion] [Step 1: Pour lotion into right hand]

Step-By-Step
Zero-Shot Planning via Causal LLM Translation to Admissible Action Autoregressive Generation

Methods

Algorithm 1: Generating Action Plans from Pre-Trained Language Models

Notation Summary:

LMp: text completion language model (also referred as Planning LM)

LMr: text embedding language model (also referred as Translation LM)

{(T;, E;)}Y_,: demonstration set, where T is task name and E is example plan for T
C' cosine similarity function

P: mean token log probability under LM p

Input: query task name @, e.g. “make breakfast”

Output: action plan consisting of admissible env actions, e.g. “open fridge”

Extract most similar example (7, E*) whose 7™ maximizes C(LMy(T), LM7(Q))
Initialize prompt with (T* + E* + Q)
while max step is not reached do
Sample LM p with current prompt to obtain k single-step action phrases
for each sample a and each admissible env action a. do
Calculate ranking score by C'(LMr(a), LMt(ae)) + B - P(a)
end for
Append highest-scoring env action a; to prompt
Append a} to output
if > 50% samples are O-length or highest score < ¢ then
break
end if
end while

C(f(a), flae)) :=

f(&)) f(ae)

~If @I (ae)l

where f is an embedding function.

argmax | max C(f(a), f(ae)) + B - Po(a)

Qe

a

where (3 is a weighting coefficient.

Experiments

100

80

% Correctness

207

LCS: the longest common subsequence between human annotations and LLM outputs

601

401

Metrics
1. Executability: whether the action plan is valid for the environment.
2. Correctness: evaluation of 10 humans
3.

Language Model Executability LCS Correctness
Vanilla GPT-2 117M 18.66% 3.19% 15.81% (4.90%)
Vanilla GPT-2 1.5B 39.40% 7.78% 29.25% (5.28%)
Vanilla Codex 2.5B 17.62% 15.57% 63.08% (7.12%)
Vanilla GPT-Neo 2.7B 29.92% 11.52% 65.29% (9.08%)
Vanilla Codex 12B 18.07% 16.97% 64.87% (5.41%)
Vanilla GPT-3 13B 25.87% 13.40% 49.44% (8.14%)
Vanilla GPT-3 175B 7.79% 17.82% 77.86% (6.42%)
Human 100.00% N/A 70.05% (5.44%)
Fine-tuned GPT-3 13B 66.07% 34.08% 64.92% (5.96%)
OUR FINAL METHODS
Translated Codex 12B 78.57% 2472% 54.88% (5.90%)
Translated GPT-3 175B 73.05% 24.09% 66.13% (8.38%)

Table 1: Human-evaluated correctness and evaluation results in VirtualHome. Although action plans generated
by large language models can match or even surpass human-written plans in correctness measure, they are
rarely executable. By translating the naive action plans, we show an important step towards grounding LLMs

in embodied environments, but we observe room to achieve this without trading executability for correctness.
We also observe a failure mode among smaller models that lead to high executability. For correctness measure,
standard error of the mean across 10 human annotators is reported in the parenthesis.

Human (100% Executability)

T Translated
© GPT-3 175B GPT-3 175B (Ours)
@ Codex 12B ®
O
GPT-3 13B Translated
Codex12B
(Ours)
GPT-2 1.5B
GPT-20.1B
20 4'0 60 80

% Executability

100

Experiments

Summary

1.

Actions generated by vanilla LLMs are generally
not very executable. While the proposed method
Improves the executabllity significantly.
For smaller vanilla LLMs
a. Executability anomaly
* Ignoring the queried task and repeating
the prompts.
b. Correctness anomaly
* Generating shorter plans through
lgnoring common-sense actions
* Task rephrasing
Source of Errors
a. Translation LM fails to map compounded
Instructions to a succinct admissible action.
b. Generated action plans stop too early.

Language Model Executability LCS Correctness
Vanilla GPT-2 117M 18.66% 3.19% 15.81% (4.90%)
Vanilla GPT-2 1.5B 39.40% 7.78% 29.25% (5.28%)
Vanilla Codex 2.5B 17.62% 15.57% 63.08% (7.12%)
Vanilla GPT-Neo 2.7B 29.92% 11.52% 65.29% (9.08%)
Vanilla Codex 12B 18.07% 16.97% 64.87% (5.41%)
Vanilla GPT-3 13B 25.87% 13.40% 49.44% (8.14%)
Vanilla GPT-3 175B 7.79% 17.82% 77.86% (6.42%)
Human 100.00% N/A 70.05% (5.44%)
Fine-tuned GPT-3 13B 66.07% 34.08% 64.92% (5.96%)
OUR FINAL METHODS
Translated Codex 12B 78.57% 24.72% 54.88% (5.90%)
Translated GPT-3 175B 73.05% 24.09% 66.13% (8.38%)

Table 1: Human-evaluated correctness and evaluation results in VirtualHome. Although action plans generated
by large language models can match or even surpass human-written plans in correctness measure, they are
rarely executable. By translating the naive action plans, we show an important step towards grounding LLMs
in embodied environments, but we observe room to achieve this without trading executability for correctness.
We also observe a failure mode among smaller models that lead to high executability. For correctness measure,

standard error of the mean across 10 human annotators is reported in the parenthesis.

Ablation & Analysis

Methods Executability LCS
Translated Codex 12B 78.57 % 24.72%
- w/o Action Translation 31.49% 22.53%
- w/o Dynamic Example 50.86% 22.84%
- w/o Trajectory Correction 55.19% 24.43%
Translated GPT-3 175B 73.05 % 24.09%
- w/o Action Translation 36.04% 24.31%
- w/o Dynamic Example 60.82% 22.92%
- w/o Trajectory Correction 40.10% 24.98 %

Table 2: Ablation of three proposed techniques.

% of Executable & Correct Plans

Vanilla GPT-2 0.1B{0.0%
Vanilla GPT-2 1.5B
Vanilla Codex 12B
Vanilla GPT-3 12B

Vanilla GPT-3 175B 6.82%

27.27%

Translated Codex 12B

Translated GPT-3 175B 35.23%

reach human-level performance (65.91%)

Ablation & Analysis

Translation LM Parameter Count Executability LCS
CODEX 12B AS PLANNING LM
Avg. GloVe embeddings - 46.92% 9.71%
Sentence Bert (base) 110M 73.21% 24.10%
Sentence Bert (large) 340M 75.16% 20.79%
Sentence RoBERTa (base) 125M 74.35% 22.82%
Sentence RoBERTa (large) 325M 78.57 % 24.72%
GPT-3 175B AS PLANNING LM
Avg. GloVe embeddings - 47.40% 12.16%
Sentence Bert (base) 110M 77.60 % 24.49 %
Sentence Bert (large) 340M 67.86% 21.24%
Sentence RoBERTa (base) 125M 72.73% 23.64%
Sentence RoBERTa (large) 325M 73.05% 24.09%

Table 3: Effect of different Translation LMs on executability and LCS.

Discussion

One possible way to finish a high-level task
1. Dynamic Example (choose a similar task as the prompt example)
2. Action Translation (map the ambiguous step-by-step action to a valid one)
3. Autoregressive Trajectory Correction
* How to find a similar task?
* Based on the similarity of two embedding vectors
* |s there a better way for action translation?
* Similarity of embeddings

* Autoregressive action generation is slow.

Inner Monologue:

-mbodied

Reasoning through Plan

with Language Mode

W. Huang et a/, “Inner Monologue: Embodied Reasoning through
Planning with Language Models.” arXiv, Jul. 12, 2022. Accessed:
Feb. 14, 2023. [Online]. Available: http://arxiv.org/abs/2207.05608

NiNg

S

http://arxiv.org/abs/2207.05608

Backgrounds

* Intelligent and flexible embodied interaction requires
1. Alarge skill set

2. Sequence skills needed for long horizon tasks
3. Percept the environment and generate feedbacks (either after or in the execution of skills)

* Existing works involves
* Using language models as planners
* Incorporating multimodal-informed perception through language

* This work:
* plan with language, execute with additional embodied feedbacks.

Methods

Robot Planning & Interaction Grounded Closed-Loop Feedback Robot Environments

Human Robot

@ Can you bring me the drink from the table? T Desc”pto’@ @SUCCESS Detectos

Robot

Action: "go to table" Sesie DR roman
. | see: coke, water, chocolate bar.

Do you want water or coke? J—

Human

@ Coke please.

Robot

Action: "pick up the coke” \“ o

Robot Action was not successful.
Action: "pick up the coke” Success Detector

st @ Action was successful.

Action: "bring it to you"

Figure 1: Inner Monologue enables grounded closed-loop feedback for robot planning with large language models
by leveraging a collection of perception models (e.g., scene descriptors and success detectors) in tandem with pretrained
language-conditioned robot skills. Experiments show our system can reason and replan to accomplish complex
long-horizon tasks for (a) mobile manipulation and (b,c) tabletop manipulation in both simulated and real settings.

Methods

Source of Feedbacks

1.

Success Detection

* Whether the last skill execution was successful.

Passive Scene Description

* Description of scene feedbacks that are consistently provided with some structure
Active Scene Description

* Providing answers to the questions of the LLM

Success Detection in context Passive Scene Description in context: Active Scene Description in context:

Robot Action: Pick up coke Robot Action: Go to table Robot Action: Go to drawers
Success: True Scene: lime soda, coke, energy bar Robot Ask: Is the drawer open?
Robot Action: Bring it to user Robot Action: pick up energy bar Human: The drawer is closed.

Robot Action: Open the drawer

Simulated Tabletop Rearrangement

CLIPort(baseline)
* A multi-task CLIPort policy trained

on long-horizon task instructions

LLM Planner

+LLM +Inner Monologue
Tasks CLIPort +oracle Object Object + Success Object + Scene
“Pick and place” 240% 74.0% 80.0% 90.0% 94.0%
“Stack all the blocks” 2.0% 320% 4.0% 10.0% 26.0%
Seen Tasks “Put all the blocks on the [x] corner/side” 2.0% 32.0% 30.0% 28.0% 30.0%
“Put all the blocks in the [x] bowl” 320% 94.0% 52.0% 46.0% 56.0%
“Put all the blocks in different corners” 0.0% 0.0% 20.0% 20.0% 26.0%
“Put the blocks in their matching bowls” 0.0% 00% 56.0% 70.0% 82.0%
Unseen Tasks “Put the blocks on mismatched bowls” 0.0% 00% 62.0% 76.0% 86.0%
“Stack all the blocks on the [x] comer/side” 0.0% 0.0% 0.0% 4.0% 6.0%

* InstructGPT

Executor
* a pre-trained language-

Table 1: Success rates for various methods, averaged across 50 episodes in Ravens-based environment with test-time
disturbances. CLIPort + oracle indicates that CLIPort was provided a “termination” oracle. Although CLIPort can
receive visual feedback from the environment, we show that LLM-informed feedback can effectively enable the planner

to retry/replan in the presence of failures, while enjoying the generalization benefits of LLMs to unseen tasks.

Human: move all the blocks into mismatching bowils.

block, blue bowl, red block, red bowl.

block in yellow bow!’, ‘blue block in red bowl’].

Tabletop
Rearrangement (Sim)

red bowl

Scene: There is a yellow block, yellow bowl, blue

Robot: My goal is [‘yellow block in blue bowl’, ‘red

Scene: You achieved [‘yellow block in blue bowl’]
Robot: | need red block in yellow bowil, blue block in

Object Recognition

conditioned pick-and-place
primitive

Achieved
s B

Achieved

I
A
&
P .o\

Yo\

Success Detection

Task-Progress
Scene Description

Real-World Tabletop Rearrangement

LLM Planner
LLM +Inner Monologue * InstructGPT
Task Family Object Object Success Object + Success
Executor
Finish 3-block stacking 20% 40% 40% 100% . L :
Sort fruits from botles 20% 50% 40% 30% MDETR .for objection detection, LLM
Total 20% 459% 40% 90% for parsing language command, a

scripted suction-based picking and
placing primitives for execution

Human: Sort fruits and condiments in different plates . Action: put
Scene: objects = [apple, egg, plum, pizza, cookie, salt, m g

=
o
]
& mustard, ketchup, Iemon] e the blue plate
a ¥ Scene: occluded objects =[] o
O ()] - rvbht nicknlacalctrawhaoarrms ciroaon nlata) 1
'.q" E Robot: AuT_V'Ut.;J:\,'\}Jd‘uC\._b\l '::vv")t:‘.f Y, ':J[C‘C‘q q'a;\e) E
o) g’ Robot: robot.pickplace(salt shaker, blue plate) k
|9 % Success Detector: False. : o ooy
- Robot: robot.pickplace(salt shaker, blue plate) e e
@©
(]
[+'4

Object Recognition

Robot: robot.stop() : y .
(w/ Potential Occlusion) Success Detection

Real-World Mobile Manipulator in a Kitchen Setting

+Inner Monologue
Task Family SayCan Success Object + Success
No Disturbances
Manipulation 50.0% 62.5% 75.0%
Mobile Manipulation 50.0% 50.0% 75.0%
Drawers 83.3% 83.3% 100.0%
With Disturbances
Manipulation 12.5% 25.0% 33.3%
Mobile Manipulation ~ 0.0% 25.0% 75.0%
Drawers 0.0% 44.4% 44.4%
Total 30.8% 48.7% 60.4%

Table 3: Averaged success rate across 120 evaluations on several
task families in our real-world mobile manipulation environment.
We consider a standard setting and adversarial setting with external
human disturbances. In all cases, LLM-informed embodied
feedback is shown to be effective in improving robustness of the
system, especially when low-level policies are prone to failures.

Human: Bnng me a drlnk from the table

Robot: ¢ table
Scene: l see a coke and lime soda

Human: Somethlng with caffeine
Robot: Pick up cok

Success Detector False

Robot: Pick up coke

Robot: Bring it to you

Robot: Put down the coke
Robot: Done

Kitchen Mobile
Manipulation (Real)

Robot: What kind of drink would you like?

SayCan(baseline)

M LLMFailures M SD Failures Control Failures No Failures (Success)

SayCan
" LLM Planner
w/ Success ° PAI_M
IM
ey
Executor
SayCan . o
* pre-trained control policies for
w/SLhécess relevant Sk'”S II’] the SCene
IM
wses [

Disturbance

0% 25% 50% 75% 100%

Figure 4: Failure causes on 120 evaluations. When
disturbances are added (red), only the Inner Mono-
logue variants consistently complete the instructions.

Pick up chocolate bar
L

Pick up coke
-

33
)
3

Pick up water

Open drawer

Object Recognition Success Detection Affordance Grounding

~ Prompt Selection €---1 Human Instructions

Loops i

selected prompt
-------------- » Assembled Inputs «-----+

,,

E________________________lstep-by-step
formatted ZElemE

. actions .
Action Validation <€-------- Action Mapper(LLM)

Safety Check Low-Level

Executor

executions l

feedbacks !~
Environment ----------) 4

Pipelines for LLM & Robotic Control

Low-Level
Perceptor

) S

