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Overview

* Pre-trained LLM for decision-making and generalization.
* A new data gathering procedure.

To summarize, our work has four main contributions:

* First, we propose to use pre-trained LMs as a general scaffold for interactive decision-making
across a variety of environments by converting all policy inputs into sequential data.

» Second, we demonstrate that language modeling improves combinatorial generalization in pol-
icy learning: initializing a policy with a pre-trained LM substantially improves out-of-distribution
performance on novel tasks.

e Third, we integrate an active data gathering procedure into the proposed approach to further
enable policy learning on environments without using pre-collected expert data.

* Finally, we perform several analyses to explain the generalization capabilities of pre-trained LMs,
finding that natural strings are not needed to benefit from LM pre-training, but the sequential input
encoding and weight pre-training are important.
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Policy Learning with Active Data Gathering

Collecting expert data is sometimes challenging.
Similar to Hindsight Experience Replay (HER)

Three stages: exploration, relabeling, policy
update.

Relabeling: relabel useful sub-trajectory of
fallure samples for training.
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Figure 2: LID with the active data gathering procedure. By
iteratively repeating the exploration, hindsight relabeling, and policy
update, LID with active data gathering can learn an effective policy
without using pre-collected expert data.



Experiment

* VitualHome;

* Three aspects: In-Distribution, Novel
Scenes, Novel Tasks

* Baselines: Recurrent Network(LSTM),
MLP, MLP-1

* BabyAl:

* Baselines: BabyAl-Ori, the method used
INn original paper.

We use the standard training and test data provided by [16]. In Ba.byAI, performing well on unseen
test tasks with new environment layouts and goals requires combinatorial reasoning.
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Figure 3: Comparisons of the proposed method and
baselines on VirtualHome. All the methods are trained
on expert data using imitation learning. MLP-1, MLP,
and LSTM are baselines without using the pre-trained
LM. The proposed method, LID-Text (Ours), outper-

forms all baselines.

Tasks Methods Number of Demos
100 500 1K 5K 10K
, BabyAI-Ori [16] 81.0 96.0 99.0 99.5 99.9
GoToRedBall | 1y vt (Ours) 93.9 99.4 99.7 100.0 100.0
GoToLoca]  BAPYAI-OTi [16] 550 84.3 98.6 99.9 998
oloLocal " 1 ID-Text (Ours) 64.6 97.9 99.0 99.5 99.5
PickupLoc  BaPYAI-Oi [16] 28.0 58.0 933 97.9 99.8
P LID-Text (Ours) 28.7 73.4 99.0 99.6 99.8
- BabyAl-Ori [16] 14.3 16.8 43.4 812 97.7
PutNextLocal | vy e vt (Ours) 11.1 93.0 93.2 98.9 99.9

Table 1: Success rates on BabyAl tasks. All the
methods are trained on offline expert data using imita-
tion learning. LID-Text (Ours) outperforms BabyAl-
Ori, the method used in the original paper [16].



Experiment

* Pre-trained Language Model with Active Data Gathering (LID-ADG)

In-Distribution Novel Scenes Novel Tasks

Random 0.0 +0.0 0.0+ 0.0 0.0 £+0.0
Goal-Object 0.8 +0.5 0.0 +=0.0 04+04
PPO 0.0+0.0 0.0+ 0.0 0.0+ 0.0
DQN+HER 0.0 +=0.0 0.0 £0.0 0.0 +£0.0

LID-ADG (Ours) 46.7 + 2.7 322 £33 255+4.1

Table 2: Comparisons of methods without using
expert data on VirtualHome. LID-ADG (Ours) 1s
the only successful approach.

In-Distribution Novel Scenes Novel Tasks

LID-ADG (Ours) 46.7 £2.7 322+£33 255441
PPO (LID-ADG Init) 53.7 = 3.5 302 +£34 27.8+27
DT (LID-ADG Data) 424+15 21.6+248 168+1.0

Table 3: The proposed method with active data gather-
ing, LID-ADG (Ours), can be used as an policy initial-
izer for online RL or a data provider for offline RL.



The pre-trained LM policy, fine-tuned on either expert data or actively gathered data, exhibits effective
' combinatorial generalization. Is this simply because LMs are effective models of relations between
An a ‘yS | S natural language descriptions of states and actions [1], or because they provide a more general
framework for combinatorial generalization in decision-making? We hypothesize and investigate
three possible factors to understand the sources of such combinatorial generalization. We use policies
trained on the expert data as an example to explain the experiments.

* Input Encoding Scheme: text/index/unnatural(randomly map each token to new token)

Methods Number of Demos

100 500 1K 5K 10K 20K
LID-Text (Ours) 88+14 222+17 268+10 460+10 582+1.2 582+4+1.6
LID-Index (Ours) 64+06 180+38 188+1.0 455+21 54608 5784+09
LID-Unnatural (Ours) 68+ 13 I186+21 27.0x1.1 472+17 558+08 58.8=+0.9

This result indicates that the effectiveness of pre-trained LMs in compositional
generalization is not unique to natural language strings, but can be leveraged from arbitrary encodings,
although adapting the model to arbitrary encodings may require more training data.

* Sequential Input Representation/Favorable Weight Initialization:
No-Seq: input encoding is not sequential
No-Pretrain: train from scratch
No-FT: no fine-tuning

In-Distribution Novel Tasks

LID-Text (Ours) 87.6 1.9 582 +23
No-Seq 74.0 £ 2.3 20+£0.6
No-Pretrain 90.8 + 2.0 47.0 £ 2.8
No-FT 51.2+45 17.0£2.9
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SayCan

* Problem Statement:

* Given a natural language instruction 1, a set of skills 11, where each skill performs a short
task, with a language description 7., and an affordance function p(c,|s. ) .

* Language-Conditioned Robotic Control Policies

* Train a set of low-level skills, with policy(BC), value function and language description.

(N

* Using LLM and prompts to get p(¢x

Algorithm 1 SayCan Instruction Relevance with LLMs
Given: A high level instruction 7, state sg, and a set of skills II and their language descriptions f;; =" 2 )
1| Prompt Examples ] / 6
Ln=0,7=0 1 -30
2. while £, , # “done” do S — ' / =
3- C = (Z) How would you put
o an apple on the 4
4  form e Tand(, € ¢y do A / —
5: pEIM = (i by ey ) > Evaluate scoring of LLM \ | B
6: paffordance — 4)(¢ |s 0 > Evaluate affordance function Iwouidst.. 5
7 pcombined — paffordancepLLM o 30
8: CW: CuU pcomt:gned T 9 /
: o y
0: end for LLM T~— 20
10: Tn ::arglnaxwerlc . .
11: Execute 7, (s, ) in the environment, updating state s,, 11
12: n=n+1
13:

I would: 1. Find an apple, 2.

Combined

Find an apple
Find a coke
Find a sponge
Pick up the apple
Pick up the coke

Place the apple
Place the coke
Go to the table

Go to the counter

Skill Affordances with Value Functions
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SayCan

* Language-Conditioned Robotic Control Policies
* Train a set of low-level skills, with policy(BC), value function(RL) and language description.

 Using LLM and prompt to get »(¢xli; b, _ys-oes bmg)

o | : Find an apple -6

‘T : Find a coke =30 /would: 1. pick
8 ' Large the apple, 2
GC, : 1. find a coffee cup, 2. pick up the coffee cup, 3. goto | Find a sponge =30 up the apple, 2.
‘D) | counter, 4. put down the coffee cup, 5. done. - Language

e: 3 [ .

e 3 Model Pfck up the apple 4 —0— M
g— ¥ How would bring me an orange? 5 Pick up the coke -30

O .

~ d 1. pick up the orange, 2. bring it to you, 3. done.

& Place the apple -5

S How would you put an apple on the Place the coke -30

g table? Place the sponge -30

- Go to the table -10

£ | would: 1.

Go to the counter -20

Figure 12: A scoring language model is queried with a prompt-engineered context of examples and the high-
level instruction to execute and outputs the probability of each skill being selected. To iteratively plan the next
steps, the selected skill is added to the natural language query and the language model is queried again.



EX p e r | m e n t Instruction Family ~ Num Explanation Example Instruction

NL Single Primitive 15 NL queries for a single primitive Let go of the coke can
[ ] M et I"l CS . NL Nouns 15 NL queries focused on abstract nouns Bring me a fruit
NL Verbs 15 NL queries focused on abstract verbs Restock the rice chips on the far counter
L4 P I an SUcCcessS ra te (Ca N a Ch |eve7) Stl’UCtUFed Language 15 Structured language queries, mirror NL Verbs ~ Move the rice chips to the far counter.
. ) Embodiment 11 Queries to test SayCan’s understanding of the ~ Put the coke on the counter. (starting
i Executl oOhn success rate (a Ch | eved?) current state of the environment and robot from different completion stages)
. . Crowd-Sourced 15 Queries in unstructured formats My favorite drink is redbull, bring one
¢ ASk h uman tO J UStIfy LOI]g-HOl‘iZOIl 15 Long-horizon queries that require many steps I spilled my coke on the table, throw it
. of reasoning away and bring me something to clean
* Ablations
* LLM: directly feed instruction into
po' | cy net. Mock Kitchen Kitchen No Affordance No LLM
PaLM- PalLM- | PaLM- PalLM-| No VF | Gen. | BCNL | BC USE
° 1 . i n SayCan SayCan| SayCan SayCan
Va I ue Fu nctio ‘I:\S. ”N O V F | Family Num | Plan Execute | Plan Execute | Plan Plan | Execute | Execute
removes VF; “Gen.” uses LLM tO0 [NCsinge 5 [ 100 100% | 93%  S7% | 13% | 87% | 0% 00%
SCO I’I N NL Nouns 15 67% 47% 60% 40% 53% 53% 0% 0%
g ) NL Verbs 15 100% 93% 93% 73% 87% 93% | 0% 0%
a NMNiffAavan+ TN CAND v/ia 127D Structured 15 93;/:( ?5:/;/:( 93?/:( %z? 93;/:( 109% 07( Oj/?
PaLM-SayCan FLAN-SayCan Embodiment 1 1 64% 55% 64% 55% 18% 36 /( 0% 0 /(
Family Num | Plan Execute | Plan Execute Crowd Sourced 15 87% 87% 73% 60% 67% 80% | 0% 0%
NL Sial s 10‘0(/ 000 67‘(/ 70 Long-Horizon 15 73% 47% 73% 47% 67% 60% | 0% 0%
ingle N © c © C . 10 »
= Total 101 849 749 81% 60% 679 74% 0% 9%
NL Nouns 15 | 67% 47% | 60%  53% = - - : : - L -
NL Verbs 15 100%  93% 80% 67%
Structured 15 93% 87% 100%  87% . . .
Embodiment 1 64% 550 64% 550 ' ‘ (2) Generqnve, Wh‘ICh uses tht:: generative output of the LLM
Crowd Sourced 15 7%  S7% 3%  67% and then projects each planned skill to its maximal cosine similarity skill via USE embeddings.
Long-Horizon 15 73% 47% 47% 33%
Total 101 84% 74% 70% 61%




Experiment

Add New Capabillities.
Adding Skills

SayCan is capable of integrating new skills by simply adding the new skills as options for the
LLM and providing accompanying value functions and add an example in the prompt with
that skill.

Chain of Thought Reasoning

A few successful rollouts of the model at evaluation time is shown in Table 4. As we can see, with
chain of thought prompting, the model can handle negations and tasks that require reasoning.

Multilingual Queries

There is almost no performance drop in planning success rate when changing the queries
from English to Chinese, French and Spanish.



