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Motivation

 Task and Motion Planning (TAMP) refers to a problem setting in which a
robot has to solve long-horizon tasks that require both symbolic anad
geometric reasoning

 The emergence of Large Language Models (LLMs) as a task-agnostic
reasoning module presents a promising pathway to general robot planning
capabilities.

 How can we verify the correctness and feasibility of long-horizon LLM-
generated plans on the symbolic and geometric level?



Solution

Human: How would you get two primary-

® TeXt2 M Ot i O n colored objects onto the rack? (LM %

symbolic state s: available actions m:

" Instruct on(red, rack) Pick(a)
* alanguage-based planning ook e Pheate
on(blue, table) Pull(a, b) m-planner 9:‘.‘?

fra m eWO rk on(green, table)... Push(a,b)..

robot skills Qa

Text2Motion

* interfaces an LLM with a library of
learned skill policies and a policy
sequence optimizer to solve
geometrically complex sequential o
manipulationtasks. on(bue, rack) v

T (

’lace blue, raCk\)

1. My goal is on(blue, rack) ~ pyim (-l i, 50 )

2. Planning with integrated search, iterate:
Useful actions e ~ PmC | 6 Tye—1)
Optimize plans Tq.¢
If on(blue, rack) Return 77,

3. My plan 7, ; is verified for execution



Contribution

* (i) an integrated search algorithm which interleaves LLM task planning with

policy sequence optimization to construct geometrically feasible plans for
tasks not seen by the skill policies during training;

 (i1) a plan termination method that infers goal states from a natural language
instruction to verify the completion of plans. We find that our integrated
method achieves a success rate of 64% on a suite of challenging table top

manipulation tasks, while prior language-based planning methods achieve a
13% success rate.



Settings

+ Alibrary of skill & = {z!,..., 2"}

 Each skill has a natural language description and comes with a policy
n(a|s) ,a Q-function @"(s, a), a dynamics modelT”(s’| s, a)

» Actions output by the policy a ~ 7( - | §) are the parameters of a

corresponding manipulation primitive p(a) which consumes the action and
executes a series of motor commands on the robot

 We also assume that a method exists for conveying the environment state s to
the LLM as natural language.



Settings

» The task planning problem is to find a sequence of skills |7}, . . ., ;] that is

likely to satisfy the instruction 1 (for notational convenience, we will hereafter
represent sequences with range subscripts, e.g. 7.4 ).

* The task planning objective is to maximize the language model likelihood of
the skill sequence r;.; given instruction ¢ and initial state s;:

(7.1 1, 5p) 0



Settings
* For example, if the goal is to move a box from the table to the rack, a symbolically correct
seqguence of actions might be Pick(box), Place(box, rack). However, we must also

consider whether the skill sequence can succeed from a geometric perspective.

 Specifically, for each skill 7;, we need to consider the geometric feasibility of the
underlying continuous parameters a,,.

» A geometrically feasible plan is one where each skill 7; and its continuous action
parameter ah receives a binary reward r;, ; if just one action fails, then the entire plan fails.

» The geometric feasibility is defined to be the probability that all skills 7;.,; achieve
rewards

p(rleli’ Sl9ﬂ1:H) @)



Objective

p(ﬂI:Hl ia Sl) (1)
p(rl:H|i9 515 ﬂl;[—]) (2)
p(ﬂI:H’ rl:Hl ia Sl) 3)

= p(zy. | L, sOp(r.gl 1, 81, 7. 1)

the probability that a skill sequence ;. is both likely to satisfy instruction 1 and is
geometrically feasible:



TEXT2MOTION

* We follow a modular approach similar to traditional TAMP methods but
replace the commonly used symbolic task planner with an LLM. The core idea
of this paper is ensure the geometric feasibility of an LLM task plan—and
thereby its correctness—by predicting the success probability of learned skills

that are sequenced according to the task plan.
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Fig. 2. Text2Motion planning overview. The user provides a natural language instruction for the robot, and then Text2Motion outputs a feasible sequence
of skills to solve the given task. First, we use the LLM to predict the set of valid goal state propositions given the instruction and current state (left). This
goal prediction will be used during planning to decide when the goal 1s satisfied and planning can be terminated. In the first planning iteration, Text2Motion
uses the LLM to propose k candidate skills with the top LLM scores. The geometric feasibility planner then evaluates the feasibility of each candidate skill,
and the one with the highest product of LLM and geometric feasibility scores is selected. The successor state of this skill 1s predicted by the geometric
feasibility planner’s dynamics model. If the predicted state does not satisfy the goal propositions, then it is given to the LLM to plan the next skill. If the
goal propositions are satisfied, then the planner returns. Text2Motion interleaves LLM planning with policy sequence optimization at each iteration. The
HIERARCHICAL method, which 1s used as an experiment baseline, uses the LLM to propose entire plans first and then runs policy sequence optimization
afterwards. As shown in the experiments, this approach fails when the space of candidate task plans 1s large but few skills are geometrically feasible.



TEXT2MOTION

* This iterative approach can be described as a decomposition of the joint probability in Eq. 3 by
timestep h

H
p(WI:HaTl:H | 2, 31) — Hp(mu”f'h | i:31,7T1:1-L—1,’f'1:1-L—1)
h=1
(4)
H
~ Hp(ﬂh,’f'h, | iaslaﬂ-lzh—l) (5)
h=1

 This allows us to further decompose Eq. 5 into the joint probability of i, and r;, which we define as
the skill score S, :

Sskill(ﬂ-h) — p(ﬂ-ha I'n ‘ 7:7 S1, 7-‘-1:}1,—1)- (6)



TEXT2MOTION

» Each planning iteration is responsible for finding the skill ;, that maximizes the skill score at timestep /. We
decompose this score into the conditional probabilities of i, and 7;;:

Sskit () = p(mn | 2,81, T1:h—1) P(Th | 4, S1,T1.1)

* We define the first factor in this product to be the language model likelihood score:
Sllm(ﬂ-h) — p(7Th ‘ ia S1, 7T1:h—1)- (7)

* We thus define the geometric feasibility score: Seeo(Th) = p(rh | 81, 71.1). (8)

* The skill score to be optimized at each iteration of planning is therefore the product of the LLM likelihood and
the geometric feasibility of the planned skill sequence:

Sskill(ﬂ'h) — Sllm(’”h) ‘ Sgeo(ﬂ'h)- (9)



Geometric feasibility planning

» we first resolve geometric dependencies across the full skill sequence 7., by maximizing the product of step
reward probabilities of the skills’ individual actions a.;;:

h
ai.;, = argmax Hp(rt | S¢,aq), (10)

A}
bot=1

- where future states s,., are predicted by dynamics models s,, | = T7(s,, a,). Note that the reward probability
p(r, = 1]s,,a,) is equivalent to a Q-function Q”(s,, a,) for skill z, in a contextual bandit setting with binary rewards.

« We can then estimate the geometric feasibility Sgw(nh) (Eqg. 8) in the context of the full skill sequence 7., by the Q-
value of the last action,
. . . ~ Th , X
p(Th =1 ‘ *Slaﬂlzh,) ~ Q } (*Sh:ah): (11)

5 geo(ﬂh)

« where ax h is determined by STAP and s, is predicted by the dynamics model. The Q-value is multiplied by the
language model likelihood (Eq. 7) to produce the combined overall score (Eq. 9) for this skKill.



LLM goal prediction

Given a library of predicate classifiers Fr describing simple geometric
relationships of objects in the scene (e.g. {on(a, b), inhand(a), under(a, b)}), a

list of objects O in the scene, and an instruction i, we use the LLM to predict J
goal proposition sets 81.j that would satisfy the instruction.

We define a satisfaction function fsgalt‘f(s) € {0,1 }that checks whether the

current symbolic state s—obtained from the predicate classifiers PP —
satisfies any of the goal proposition sets 81

We use f, . in two ways: i) as a success classifier to check whether a given

state satisfies the natural language instruction and ii) as a chain-of-thought
prompt when prompting the LLM for action sequences.



Experiments

Long-horizon (LH): task requires skKill
sequences 111:H of length six or greater
to solve. (Task 12356)

Lifted goals (LG): Goals are expressed
over object classes rather than object
instances. (Task 456)

Partial affordance perception (PAP): SkKill
affordances cannot be perceived solely
from the spatial relationships described
in the initial state s1.(Task 456)

) : Task 2: How would you pick
Task 1: How would you pick and place the yellow box and

and place all of the boxes onto blue box onto the table. then Task 3: How would you move

the rack? use the hook to push the cyan three of the boxes to the rack?

box under the rack?

Task 4: How would you put one Task 6: How would you put two
box on the rack (hint you may Task 5: How would you get primary colored boxes onto the
use a hook)? two boxes onto the rack? rack?

Fig. 3. TableEnv Manipulation evaluation task suite. We evaluate the
performance of all methods on a task suite based on the above manipulation
domain. The tasks considered vary in terms of difficult and each contains a
subset of three properties: being long-horizon (Tasks 1, 2, 3, 5, 6), containing
lifted goals (Tasks 4, 5, 6), and having partial affordance perception (Tasks
4, 5, 6). During evaluation, we randomize the geometric parameters of each
task for each random seed.



Experiments

generate task plans:
text-davinci-003

Other:
code-davinci-002

Available scene objects: [‘table’, ‘hook’, ‘rack’,
‘vellow box’, ‘blue box’, ‘red box’]

Object relationships: [ ‘inhand(hook)’, ‘on(yellow
box, table)’, ‘on(rack, table)’, ‘on(blue box, table)’]

Human 1instruction: How would you push two of the
boxes to be under the rack?

Goal predicate set: [[‘under(yellow box, rack)’,
‘under(blue box, rack)’], [‘under(blue box, rack)’,
under(red box, rack)’], [‘under(yellow box, rack)’,
under(red box, rack)’].

L

.

Top 5 next valid robot actions (python 1list):
| 'push(yellow box, rack)’, ’push(red box, rack)’,
'place(hook, table)’, ’place(hook, rack)’, ’pull(red
box, hook)’ ]



Experiments
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Fig. 4. Results on the TableEnv manipulation domain with 10 seeds
for each task. Top: Our method (Text2Motion) significantly outperforms all
baselines on tasks involving partial affordance perception (Task 4, 5, 6).
For the tasks without partial affordance perception, the methods that use
policy sequence optimization (ours and HIERARCHICAL) both convincingly
outperform the methods (SAYCAN-GS and INNERMONO-GS) that do not use
policy sequence optimization. We note that HIERARCHICAL performs well
on the tasks without partial affordance perception as it has the advantage of
outputting multiple goal-reaching candidate task plans and selecting the most
geometrically feasible. Bottom: Methods without policy sequence optimiza-
tion tend to have high sub-goal completion rates but very low success rates.
This divergence arises because it 1s possible to make progress on tasks without
resolving geometric dependencies in the earlier timesteps; however, failure to
account for geometric dependencies results in failure of the overall task.
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Fig. 5. Failure modes of planning based methods on two types of tasks
In this plot, we analyse the various types of failure modes that occur with
the integrated planner and the hierarchical planner when evaluated on tasks
with partial affordance perception (PAP; see Sec. V-D for an explanation) and
tasks without partial affordance perception (non-PAP). Top: For the PAP tasks,
the hierarchical planner outperforms the integrated planner. We attribute this
difference to the hierarchical planner’s ability to output multiple task plans
while the integrated planner can only output a single plan. Bottom: For the
non-PAP tasks, the hierarchical planner 1s much less likely to output a plan
than the integrated approach as the integrated approach is able to use its value
functions to prune away geometrically infeasible action sequences.



