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Background

Accurate human modelling remains a significant challenge for human-robot interaction:
• Handcrafted human model: strong assumptions à limit model flexibility and challenging to scale up to 

real-world settings.
• Non-parametric data-driven model: human interaction data

Can LLMs function effectively as human models for HRI?
• Authors first present an empirical study that shows that LLMs indeed well-capture human latent states 

and behavior (test 3 datasets on two SOTA LLMs)
• A deeper analysis of our results shows that the LLMs do not work well on tasks that require spatial and 

numerical reasoning, and are sensitive to prompt syntax. 
• This can make application in real-world HRI scenarios challenging and suggest that LLMs may be 

best used as “task-level” human models.



Related Work

Human models for HRI:
1. Theory-of-mind (ToM): ToM models broadly refer to methods that incorporate a set of 

assumptions about human mental processing and behavior.
• Bayesian ToM assumes humans behave rationally and update their beliefs in a Bayesian 

manner
2. Black-box data-driven models: make few assumptions and model human behavior in a data-

driven manner
• MIRROR: models a human based on a robot’s internal self-model (trained with RL) and 

the uses a small amount of human data to adapt the model to a particular individual.



LLMs as Zero-Shot Human Models

Aim: evaluate the performance of LLMs on a set of social inference tasks --- Given information 
about a context/scenario, aim to predict either a human’s behavior or state.

Problem Statement: Seek to model the distribution , where.              is a specific 
property of one of the human agents , h is history of interactions. More precisely, z is an 
abstract scenario-specific random variable.

Methods: Omit for too NLP

Results:
LLMs can be effective human models for HRI without further training or fine-tuning.
LLMs can perform poorly on HRI tasks that require spatial/physical/numerical reasoning
LLMs are sensitive to the prompt structure.
our results suggest that LLMs are better-suited as task-level (symbolic) human models, and 
alternative “low-level” models may be needed to account for geometry and motions in a 
continuous space.



Planning with LLM-Based Human models

Problem Statement:

Experiment 1: table-clearing
a human and a robot collaborate to clear objects off a table. 
• The objects include three water bottles, one fish can, and one wine glass.
• At each time step, the robot chooses one of the objects to remove
• The human then chooses whether to intervene and pick up the object, or stay put and let the robot 

remove the object by itself.
• If the human stays put and the robot succeeds, they will get a reward based on the object: 1 for 

plastic bottle, 2 for fish can, and 3 for wine glass.
• if they stay put and the robot fails, they will receive a penalty: no penalty for plastic bottle, 4 for fish 

can and 9 for wine glass.
• If they choose to intervene, they will receive no reward or penalty. 
• It is assumed that the robot will never fail but this information is not revealed to the human participant.



Planning with LLM-Based Human models

Experiment 1: table-clearing

• TC: We explicitly include the Trust Change in 
each turn (the most likely post-observation 
trust-change predicted by the LLM model) 
using a multiple-choice question with options 
{increased, decreased, unchanged}

• YN: Instead of asking which action the human 
will take when the robot chooses to remove 
an object, the prompt asks a Yes-No question 
about whether the human will trust the robot 
to do so. We assume a deterministic 
relationship between trust and the human 
action, i.e., the human will intervene if they do 
not trust the robot to perform the task and 
stay-put otherwise.



Planning with LLM-Based Human models

Experiment 1: table-clearing



Planning with LLM-Based Human models
Experiment 2: Utensil-passing Experiment

• In this scenario, a human is washing utensils in a kitchen and a robot (a Franka Emika Panda robot 
arm) is helping to pass dirty utensils to them.

• The objects include a spatula, an egg whisk, a pair of scissors, and a knife.
• At each time step, the robot chooses one of the objects to pass. The human then chooses between 

two actions: 
• (A) intervene and retrieve the object by themselves or 
• (B) stay put and wait for the robot to pass it.

• if the human stays put and the robot succeeds, they receive a reward of 1.
• Since the utensils are dirty, the handover is only considered successful if the robot passes the object 

in a manner that the human can easily grasp the clean handle.
• If the human stays put and the robot fails, they receive a penalty of −1. 
• If the human chooses to intervene, they will receive no reward or penalty.
• The following information is not revealed to the participant: the robot is able to always succeed on the 

spatula, whisk, and scissors, but it may fail to properly hand over the knife and accidentally drop it.
• If the knife is dropped, the experiment is terminated and a penalty of −10 is received.

• intentionally fail on all utensils (except the knife) by handing the wrong part to the human (so that the 
human can only grasp the dirty end. This intentional failure results in a penalty of −1



Planning with LLM-Based Human models
Experiment 2: Utensil-passing Experiment



Planning with LLM-Based Human models
Experiment 2: Utensil-passing Experiment



Summary and Discussion
• “a first study” into LLM-based zero-shot human models in HRI.
• key finding is that LLMs can be effective task-level human-models — they can 

model high-level human states and behavior.
• demonstrated that incorporating a LLM-based human model can yield 

reasonable plans in both trust-based HRI scenarios.

Discussion:
trust-based HRI scenarios are good testbeds for our influence human work?



[2301.02555] "No, to the Right" -- Online Language Corrections for Robotic Manipulation via Shared 
Autonomy (arxiv.org)

https://arxiv.org/abs/2301.02555


Background

Research in natural language for robotics has focused on dyadic, turn-based interactions between 
humans and robots.
In this paradigm a human gives an instruction, then the robot executes autonomously – simultaneously 
resolving the human’s goal as well as planning a course of actions to execute in the environment, without 
any additional user input.

This explicit division of agency between humans and 
robots places a tremendous burden on learning
• inefficiency

• existing systems either require large amounts 
of language-aligned demonstration data to 
learn policies

• make other restrictive assumptions about 
known environment dynamics

• lack of adaptivity



LILAC
LILAC: Language-Informed Latent Actions with Corrections – that presents a generalizable framework for 
adapting to online natural language corrections built within a shared autonomy paradigm for human-
robot collaboration.

Perception 
input

Instruction and correction input

GPT-3 Autoencoder for human modelling

Output

Other human control



LILAC
Problem Statement

𝑢 ∈ U denotes a high-level natural language instruction provided by the user
c ∈ C∗ denotes the ordered (possibly empty) stack of natural language corrections the user has 
provided
𝑎 ∈ A ⊆ R𝑘 denotes a robot’s 𝑘-dimensional action
𝑧 ∈ Z ⊆ R𝑑 where 𝑑 ≪ 𝑘 denotes a user-provided input via their low-dimensional control device (e.g., 
a 2-DoF joystick)

The goal of LILAC is to learn a function F𝜃 (𝑠𝑡 , 𝑧𝑡 , 𝑢𝑡 , c𝑡 ) : S × Z × U × C∗ → A

The corresponding low-DoF control manifold Ð 𝑧𝑡 ∈Z F𝜃 (𝑠𝑡 , 𝑧𝑡 , 𝑢𝑡 , c𝑡 ) provides an intuitive 
interface for the user to maneuver the robot towards satisfying the task in question.



LILAC
At each new timestep 𝑡 + 1, a user can either provide a new language correction 𝑐 ′ which is “pushed” onto the 
stack, press a button to “pop” their latest correction off of the stack c𝑡 signalling that their correction has been 
addressed, or provide a control input 𝑧𝑡 that is mapped to the corresponding robot action 𝑎𝑡 .

Address if the correction is completed



LILAC
At each new timestep 𝑡 + 1, a user can either provide a new language correction 𝑐 ′ which is “pushed” onto the 
stack, press a button to “pop” their latest correction off of the stack c𝑡 signalling that their correction has been 
addressed, or provide a control input 𝑧𝑡 that is mapped to the corresponding robot action 𝑎𝑡 .

Learning from Language & Demonstrations. To learn F𝜃 , we 
assume a dataset of (𝑢 = language, 𝜏 = trajectory) pairs,

Address if the correction is completed

learning a state-and-language conditional autoencode

we do not have access to “ground-truth” latent actions 
𝑧 for each given robot action 𝑎

Using GPT-3 to Identify Corrections



LILAC

PROMPT = (
"I'm building a robot that can follow language commands. Tell me (YES or NO) if the 

robot can execute "
"the following language instructions without knowing any other information about its 

environment.\n\n"
"Input: move to the right\n"
"Output: YES\n\n"
"Input: rapidly twist to the front\n"
"Output: YES\n\n"
"Input: clean up the spilled coffee\n"
"Output: NO\n\n"
"Input: left\n"
"Output: YES\n\n"
"Input: move towards the bookshelf\n"
"Output: NO\n"
"Input: %s\n"
"Output:"

)
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Summary and Discussion

LILAC is built within the shared autonomy paradigm whereby natural language 
utterances are mapped to meaningful, low-dimensional control spaces that 
humans can use to guide the robot, with each correction provided by the user 
working to refine the underlying control space, allowing for precise, targeted 
control.



Discussion


