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1. The Shapley Value may not be the optimal theoretical framework for addressing this problem for
several reasons:

» While the Shapley value distributes contributions throughout the grand coalition by con-
sidering all possible permutations of players, our problem doesn’t prioritize the order of
strategies. This may lead to decreased efficiency.

agents. Shapley’s insight, which led to the definition of the Shapley value, was that this dependence
can be eliminated by averaging over all possible orderings, or permutations, of the players.

To formally define the Shapley value, we need some additional notation. Fix a characteristic
function game G = (N, v). Let 1y denote the set of all permutationsof N ,1.e.,one-to-one mappings
from N to itself. Given a permutation w € Iy, we denote by S (i) the set of all predecessors of i
inm,ie,wesetSy(i) ={j € N|n(j) <n(i)}. Forexample,if N = {1, 2, 3} then

[y = ;(1,2, 3)l (1,3,2), |2, 1, E)I (2,.3::1), 3:1,2), (3,2 1)}.

Moreover,if t = (3,1, 2) then S, (3) =9, S, (1) = {3}, and S, (2) = {1, 3}.
The marginal contribution of an agent i with respect to a permutation 7 inagame G = (N, v)

is denoted by Ag (i) and 1s given by

AZ (i) = v(Sr (i) U {i}) — v(Sx (i)).
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Background

Accurate human modelling remains a significant challenge for human-robot interaction:

Handcrafted human model: strong assumptions - limit model flexibility and challenging to scale up to
real-world settings.

Non-parametric data-driven model: human interaction data

Can LLMs function effectively as human models for HRI?

Authors first present an empirical study that shows that LLMs indeed well-capture human latent states
and behavior (test 3 datasets on two SOTA LLMs)

A deeper analysis of our results shows that the LLMs do not work well on tasks that require spatial and
numerical reasoning, and are sensitive to prompt syntax.

This can make application in real-world HRI scenarios challenging and suggest that LLMs may be
best used as “task-level” human models.



Related Work

Human models for HRI:
1. Theory-of-mind (ToM): ToM models broadly refer to methods that incorporate a set of
assumptions about human mental processing and behavior.
« Bayesian ToM assumes humans behave rationally and update their beliefs in a Bayesian
manner
2. Black-box data-driven models: make few assumptions and model human behavior in a data-
driven manner
« MIRROR: models a human based on a robot’s internal self-model (trained with RL) and
the uses a small amount of human data to adapt the model to a particular individual.



LLMs as Zero-Shot Human Models

Aim: evaluate the performance of LLMs on a set of social inference tasks --- Given information
about a context/scenario, aim to predict either a human’s behavior or state.

Problem Statement: Seek to model the distribution p(z#[s:. 1) | where. =/ € 2" is a specific
property of one of the human agents o« € A, h is history of interactions. More precisely, z is an
abstract scenario-specific random variable.

Methods: Omit for too NLP

Results:

LLMs can be effective human models for HRI without further training or fine-tuning.

LLMs can perform poorly on HRI tasks that require spatial/physical/numerical reasoning
LLMs are sensitive to the prompt structure.

our results suggest that LLMs are better-suited as task-level (symbolic) human models, and
alternative “low-level” models may be needed to account for geometry and motions in a
continuous space.



Planning with LLM-Based Human models
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Problem Statement:

where v is the discount rate. We approximate the unknown
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Experiment 1: table-clearing

a human and a robot collaborate to clear objects off a table.

« The objects include three water bottles, one fish can, and one wine glass.

» At each time step, the robot chooses one of the objects to remove

« The human then chooses whether to intervene and pick up the object, or stay put and let the robot
remove the object by itself.

 If the human stays put and the robot succeeds, they will get a reward based on the object: 1 for
plastic bottle, 2 for fish can, and 3 for wine glass.

 if they stay put and the robot fails, they will receive a penalty: no penalty for plastic bottle, 4 for fish
can and 9 for wine glass.

» If they choose to intervene, they will receive no reward or penalty.
» Itis assumed that the robot will never fail but this information is not revealed to the human participant.
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Experiment 1: table-clearing

... (description of experiment setup and rules)

Turn 1: Robot choice: plastic bottle; Human choice: stay put;
Outcome: the robot successfully removes the plastic bottle.
(Include “The human'’s trust in the robot increased.” in the case of
TC)

... (rest of interaction history)

Question: Now the robot chooses to remove the wine glass,
what will the human do? Answer choices: A. intervene, B. stay put.
OR in the case of YN:

Question: Will the human trust the robot to remove the wine glass
now? Answer choices: A. Yes, B. No.

Fig. 4: Example prompt used in table-clearing experiment.

TC: We explicitly include the Trust Change in
each turn (the most likely post-observation
trust-change predicted by the LLM model)
using a multiple-choice question with options
{increased, decreased, unchanged}

YN: Instead of asking which action the human
will take when the robot chooses to remove
an object, the prompt asks a Yes-No question
about whether the human will trust the robot
to do so. We assume a deterministic
relationship between trust and the human
action, i.e., the human will intervene if they do
not trust the robot to perform the task and
stay-put otherwise.
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Experiment 1: table-clearing

TABLE V: Simulated Table-clearing Experiment Results.

Mean Return Interv. prob. on Glass

DAVINCI-TC-YN 6.17 (0.034) 0.352
DAVINCI-YN 6.13 (0.034) 0.366
DAVINCI-TC 6.15 (0.034) 0.357
DAVINCI 6.14 (0.034) 0.360
T5-TC-YN 6.10 (0.034) 0.368
T5-YN 6.01 (0.035) 0.398
T5-TC 5.94 (0.034) 0.395
S 5.95 (0.035) 0.405

TRUST-POMDP 6.17 (0.034) 0.352




Planning with LLM-Based Human models

Experiment 2: Utensil-passing Experiment

 In this scenario, a human is washing utensils in a kitchen and a robot (a Franka Emika Panda robot
arm) is helping to pass dirty utensils to them.
» The objects include a spatula, an egg whisk, a pair of scissors, and a knife.
« At each time step, the robot chooses one of the objects to pass. The human then chooses between
two actions:
* (A) intervene and retrieve the object by themselves or
« (B) stay put and wait for the robot to pass it.
 if the human stays put and the robot succeeds, they receive a reward of 1.
« Since the utensils are dirty, the handover is only considered successful if the robot passes the object
in @ manner that the human can easily grasp the clean handle.
 If the human stays put and the robot fails, they receive a penalty of —1.
« If the human chooses to intervene, they will receive no reward or penalty.
« The following information is not revealed to the participant: the robot is able to always succeed on the
spatula, whisk, and scissors, but it may fail to properly hand over the knife and accidentally drop it.
 If the knife is dropped, the experiment is terminated and a penalty of —10 is received.
 intentionally fail on all utensils (except the knife) by handing the wrong part to the human (so that the
human can only grasp the dirty end. This intentional failure results in a penalty of -1
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Experiment 2: Utensil-passing Experiment

Fig. 5: (Left) Utensils used for the experiment: spatula, egg
whisk, scissors and knife. (Right) The experiment environ-
ment that emulates a kitchen.

Fig. 6: Success condition (top) and intentional failure (bot-
tom) while passing the scissors.



Planning with LLM-Based Human models

The University of Manchester

Experiment 2: Utensil-passing Experiment

Hypothesis and Planners. We consider two different plans:

o« LLM-PLAN, which is a deterministic plan generated by
planning with a DAVINCI-TC-YN-based human model
with prompts similar to the table-clearing setup.;

e BASIC-PLAN, a myopic plan that always passes the
spatula, egg whisk, scissors, and knife in that order and
never intentionally fails.

Our hypothesis was that a robot following LLM-PLAN will
reduce overtrust and yield higher returns compared to a robot
following BASIC-PLAN.

Participant Recruitment and Allocation. We recruited%S
participants from our university campus (ages 22 to 54).
Participants were randomly divided into two groups. Each
group was paired with either the LLM-PLAN robot or the
BASIC-PLAN robot. Due to safety considerations,%artici-
pants did not physically interact with the robot. Instead, they
completed an interactive video survey where a pre-recorded
video of the robot’s behavior was shown at each turn.

Results. 21 out of the 33 participants (63.6%) in the BASIC-
PLAN group allowed the robot to pass the knife, compared
to% out of 32 participants (28.1%) in the LLM-PLAN group.
As a result, the mean return was higher for the LLM-PLAN
robot (-1.88) vs. BASIC-PLAN robot (-4.24), which a one-
way ANOVA showed to be statistically significant at the
a = 5% level (F(1, 63) = [4.302], p = 0.042). These results
support our hypothesis.



Summary and Discussion

rsity of Manchester

“a first study” into LLM-based zero-shot human models in HRI.

key finding is that LLMs can be effective task-level human-models — they can
model high-level human states and behavior.

demonstrated that incorporating a LLM-based human model can yield
reasonable plans in both trust-based HRI scenarios.

Discussion:
trust-based HRI scenarios are good testbeds for our influence human work?



MANCHESTER
1824

The University of Manchester

“No, to the Right” — Online Language Corrections for Robotic
Manipulation via Shared Autonomy

Yuchen Cui" Siddharth Karamcheti’ Raj Palleti
yuchenc@cs.stanford.edu skaramcheti@cs.stanford.edu Stanford University
Stanford University Stanford University Stanford, CA, USA
Stanford, CA, USA Stanford, CA, USA
Nidhya Shivakumar Percy Liang Dorsa Sadigh
The Harker School Stanford University Stanford University
San Jose, CA, USA Stanford, CA, USA Stanford, CA, USA

[2301.02555] "No, to the Right" -- Online Language Corrections for Robotic Manipulation via Shared

Autonomy (arxiv.org)



https://arxiv.org/abs/2301.02555

Background

The University of Manchester

Research in natural language for robotics has focused on dyadic, turn-based interactions between
humans and robots.
In this paradigm a human gives an instruction, then the robot executes autonomously — simultaneously

resolving the human’s goal as well as planning a course of actions to execute in the environment, without
any additional user input.

This explicit division of agency between humans and
robots places a tremendous burden on learning

inefficiency
« existing systems either require large amounts
of language-aligned demonstration data to
learn policies
* make other restrictive assumptions about
known environment dynamics
lack of adaptivity

“Pick up the book and insert it into the bookshelf!" | |am stuck!

Figure 2: A user interacts with our system. [Left] The user utters “pick up the book and insert it into the bookshelf,” inducing
alow-dimensional controller (depicted with the joystick and shaded inputs). [Middle] This control space is state and language-
conditioned: pressing down brings the end-effector close to the book, while holding up/left after grasping the book moves the
end-effector towards the shelf. However, this static controller is not enough; the user gets stuck! [Right] Our approach allows
users to provide real-time corrections (“tilt down a little bit”) refining the control space so the user can complete the task.
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LILAC: Language-Informed Latent Actions with Corrections — that presents a generalizable framework for

adapting to online natural lanqguage corrections built within a shared autonomy paradigm for human-
robot collaboration.
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Figure 3: LILAC Overview - solid lines represent the inference pipeline, while dashed lines indicate training-only steps. Part
of LILAC’s ability to incorporate language corrections efficiently is the “gating” module (orange) which controls the amount
of state-context for a given input — for example, grounding a correction such as “tilt down a little bit” requires no state context
(a = 0), whereas a high-level instruction such as “pick up the book and insert it into the bookshelf” does require context (o« = 1).
We use GPT-3, a pretrained language model, to provide « (see §4.3 for discussion).
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Problem Statement

(S, AT, UC*,2Z)

u € U denotes a high-level natural language instruction provided by the user

c € Cx denotes the ordered (possibly empty) stack of natural language corrections the user has
provided

a € A € Rk denotes a robot’s k-dimensional action

z € Z € Rd where d < k denotes a user-provided input via their low-dimensional control device (e.g.,
a 2-DoF joystick)

The goal of LILAC is to learn a function F@ (st , zt ,ut ,ct ): SxZx U x Cx - A

The corresponding low-DoF control manifold D zt €Z F6 (st , zt , ut , ct ) provides an intuitive
interface for the user to maneuver the robot towards satisfying the task in question.
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At each new timestep t + 1, a user can either provide a new language correction c ' which is “pushed” onto the

Stack, press a button to “pop” their latest correction off of the stack cz signalling that their correction has been
addressed, or provide a control input z¢ that is mapped to the corresponding robot action at .
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At each new timestep t + 1, a user can either provide a new language correction c ' which is “pushed” onto the

Stack, press a button to “pop” their latest correction off of the stack cz signalling that their correction has been
addressed, or provide a control input zz that is mapped to the corresponding robot action at .

Using GPT-3 to Identify Corrections

- :tions a. Crisply, we define a = Fy (s, z,u, ¢) as:
| Basis 1 — (6-DoF) | Pr:dg—'tid
. - obo itk
| Basis 2 — (6—DoF)| Action hstate € R™ = EncodeStatey(s)

Hlanguage € R™ = Encodelanguageg(u, c)

3 a=0
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= Dbases

Learning from Language & Demonstrations. To learn F8 , we
assume a dataset of (u = language, t = trajectory) pairs,

d
Zcompressed € R™ = Compressg(a)
k
areconstruct € R™ = Bpages Zcompressed

we do not have access to “ground-truth” latent actions )
z for each given robot action a L(9) = |la - areconstructl|3

learning a state-and-language conditional autoencode
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PROMPT = (

"I'm building a robot that can follow language commands. Tell me (YES or NO) if the
robot can execute "

"the following language instructions without knowing any other information about its
environment.\n\n"

"Input: move to the right\n"

"Output: YES\n\n"

"Input: rapidly twist to the front\n"

"Output: YES\n\n"

"Input: clean up the spilled coffee\n"

"Output: NO\n\n"

"Input: left\n"

"Output: YES\n\n"

"Input: move towards the bookshelf\n"

"Output: NO\n"

"Input: %s\n"

"Output:"
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Environment & Tasks. We consider a multi-task “desk” environ-
ment (Figure 5) with the following tasks listed by complexity:

(1) clean-trash: throw away a piece of crumpled paper (de-
formable) into the black trash bin.

(2) transfer-pen: transfer the blue marker (upper left of Fig-
ure 5) from the shelf into the metal tin holder (lower left).

(3) open-drawer: Open the bottom drawer on the shelf by grasp-
ing the small knob, and sliding out horizontally (requires
fine-grained end-effector orientation control).

(4) insert-book: Pick up the book on the table by its spine, and
insert it into the bookshelf (has only a few millimeters of
clearance on either side).

(5) water-plant: Water the succulent (white bowl on the upper
right of Figure 5) using the water in the yellow cup (rather
than actual water, we use marbles for easy cleanup).

=l b ﬁ/‘ e @ R

Figure 5: Setup of our tabletop manipulation environment
with sketches of our high-level tasks (further details in §5).
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Figure 4: Results from our user study (n = 12) across three conditions: 1) Language-Conditioned Imitation Learning, 2)

Language-Informed Latent Actions (LILA) — an instantiation of language-informed shared autonomy without online correc-
tions, and 3) LILAC - our approach where users can provide online corrections at any point during robot execution.



LA

The University of Manchester

“Open the bottom
drawer of the shelf”

“Water the succulent s x 2
with the yellow cup” . | : High-Level Instruction

Correction

Figure 6: Qualitative trajectories across the different control strategies for the open-drawer and water-plant tasks. The fully
autonomous imitation learning approach fails to make it beyond the first stage of the task, while LILA is able to reach the
drawer as well as the cup but fails to precisely aim and grasp the object. LILAC gets stuck at the same place, but is able to
recover as the user issues low-level corrections to precisely maneuver the end-effector and fully complete the tasks.
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Figure 7: Observed trajectories for LILA and LILAC on the open-drawer task (with train trajectories shown on the left). While
LILA deviates from the observed state distribution, states traversed with LILAC are close to those seen at training,.
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LILAC is built within the shared autonomy paradigm whereby natural language
utterances are mapped to meaningful, low-dimensional control spaces that
humans can use to guide the robot, with each correction provided by the user
working to refine the underlying control space, allowing for precise, targeted

control.
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Discussion



