
Robotics-LLM Reading Party
- Chat with the Environment: Interactive Multimodal Perception
using Large Language Models
- Code as Policies: Language Model Programs for Embodied Control

2023.4.21

Weiqin Zu
ShanghaiTech University

Chat with the Environment: Interactive Multimodal Perception using Large Language Models

https://arxiv.org/pdf/2303.08268.pdf

n Background

• How do humans perceive the surroundings to uncover latent
properties?

• Humans naturally perform multimodal observations and
examinations using common sense and established knowledge
in daily life.

Ø Robot well-equipped with multiple sensors and LLMs
Ø choose stimuli to attend to, avoiding eagerly being bogged down into

details
Ø respond accordingly to the resulting sensations in the context of a

specific task.

n Introduction

• Interactive Multimodal Perceptions
• Like humans, robots can perceive the environment in either a passive or an interactive way
• Interactive perception is complex and requires a mediating system to handle multiple types of

sensory data.

• Chatting with the Environment
• In terms of generalizability, the knowledge of LLMs allows a behavioral agent to adapt

efficiently to novel concepts and environmental structures.

n Matcha

• Matcha (multimodal environment chatting agent)
• be able to interactively perceive (“chat” with) the environment

through multimodal perception when the information from passive
visual perception is insufficient for completing an instructed task.

• LLM backbone
• multimodal perception modules
• a low-level command execution policy.

• They connect via language as intermediate
representation for information exchange.

n Matcha

• Vision
• detect objects with their categories and positions in the scene.

Then, the results will be delivered to a policy module for
identification and execution.

• Impact Sound

• Weight

• Haptics

• Execution Policy

n Experiments

• Experimental Setup
• a robot is instructed to pick up an object that is referred to by

a latent property – material – which is, however, not visually
distinguishable.

• several blocks in various colors, materials, weights and surface
textures and placed on the table next to a brown container

• Experiments are done in CoppeliaSim3 simulations

n Experiments
• Case Studies

n Summary & Discussion

• demonstrate the superiority of using an LLM to realize interactive multimodal
perception.
• propose Matcha, a multimodal interactive agent augmented with LLMs, and evaluate
it on the task of uncovering object latent properties.

• Generalizability Evaluation
• Property Combination
• Utility Reasoning

Code as Policies: Language Model Programs for Embodied Control

https://arxiv.org/pdf/2209.07753.pdf

n Background

• Robots require the language to be grounded in order to establish a
connection between the physical world, words, percepts, and actions.

• rule-based methods: Use lexical analysis to understand language and
inform policies, but struggle with new instructions.

• data-driven methods: Learn language-to-action directly, but need a lot
of data and can be expensive on real robots.

• how can LLMs be applied beyond just planning a sequence of skills?
• orchestrating planning, policy logic, and control

• Code-completion synthesizes Python programs from docstrings.

• Models can be reused to write robot policy code using natural
language commands.

• Policy code can process perception outputs and control primitive
APIs.

n Code as Policies

• CaP: a robot-focused approach to executing language model-generated programs (LMPs) on real systems.

• Pythonic LMPs can define sophisticated policies using:
• Classic logic structures such as sequences, selection (if/else), and loops (for/while) to assemble new behaviors

at runtime.
• Third-party libraries for spatial-geometric reasoning, such as NumPy for point interpolation and Shapely for

shape analysis and generation.

• LMPs can be hierarchical, allowing for the recursive definition of new functions, the accumulation of libraries, and
self-architecting a dynamic codebase over time.

• Across multiple robot systems, they show that LLMs can independently interpret natural language commands to
generate LMPs representing reactive low-level policies (e.g., PD or impedance controllers) and waypoint-based
policies (e.g., for vision-based pick and place or trajectory-based control).

n Code as Policies

• react to perceptual

• parameterize control primitive APIs
• are directly compiled and executed on a robot

• Functions defined by LMPs can progressively accumulate over time

n Code as Policies

• Prompting Language Model Programs
• Hint: import statements that inform the and type hints

on how to use those APIs.
• Examples: instruction-to-code pairs that present few-

shot "demonstrations" of how natural language
instructions should be converted into code.

• Example Language Model Programs (Low-Level)
• Third-party libraries
• First-party libraries
• Language reasoning

n Code as Policies

• Example Language Model Programs (High-Level)
• Control flows: allow using control structures.

• LMPs can be composed via nested function calls.

• LMPs can hierarchically generate functions.
• High-level LMPs can also follow good abstraction practices and avoid

"flattening" all the code logic onto one level.

• We use the function- generating LMP to write these undefined
functions and add them to the scope.

• Combining control flows, LMP composition, and hierarchical
function generation.

n Code as Policies

• Language Model Programs as Policies
• In the context of robot policies, LMPs can compose perception- to-control feedback logic given natural

language instructions, where the high-level outputs of perception model(s) (states) can be programmatically
manipulated and used to inform the parameters of low-level control APIs (actions).

• The benefits of LMP-based policies are threefold
• they can adapt policy code and parameters to new tasks and behaviors specified by unseen natural

language instructions.
• can generalize to new objects and environments by bootstrapping off of open-vocabulary perception

systems and/or saliency models.
• Don’t require any additional data collection or model training.

n Experiments

• CaP: Drawing Shapes via Generated Waypoints

• CaP: Pick & Place Policies for Table-Top Manipulation

• CaP: Table-Top Manipulation Simulation Evaluations
• CaP: Mobile Robot Navigation and Manipulation

n Discussion & Limitation

• CaP generalizes at a specific layer in the robot stack.

• CaP fits into systems with factorized perception and control.

• Our method inherits LLM capabilities unrelated to code writing, such as supporting instructions
with non-English languages or emojis (Appendix N).

• CaP can express cross-embodied plans that perform the same task differently depending on the
available APIs .

• Limitation
• Perception APIs limitations, e.g. visual-language models cannot describe some trajectories, and only

limited primitive parameters can be adjusted.
• Struggles with longer or complex commands, or those operating at different abstraction levels from

given examples.
• Assumes all given instructions are feasible and cannot predict correct response beforehand.

Thanks

