q\ I R DN

X'*i‘*}*m,/‘fe; ShanghaiTech University

Robotics-LLM Reading Party

- Chat with the Environment: Interactive Multimodal Perception

using Large Language Models
- Code as Policies: Language Model Programs for Embodied Control

Weiqgin Zu
ShanghaiTech University

2023.4.21

Fa) ki8R B R

"o%;y%g:ﬁ%’\:{ﬁ ShanghaiTech University

Chat with the Environment: Interactive Multimodal Perception using
Large Language Models

Xufeng Zhao*, Mengdi Li, Cornelius Weber, Muhammad Burhan Hafez, and Stefan Wermter

The authors are with the Knowledge Technology Group, Depart-
ment of Informatics, Universitdit Hamburg, 22527 Hamburg, Germany. E-
mail: {xufeng.zhao, cornelius.weber, burhan.hafez, stefan.wermter } @uni-
hamburg.de, mengdi.li @studium.uni-hamburg.de.

Chat with the Environment: Interactive Multimodal Perception using Large Language Models

https://arxiv.org/pdf/2303.08268.pdf

T B R K

¢/ ShanghaiTech University

W Background

D)

visualize(scene)

 How do humans perceive the surroundings to uncover latent
properties?
* Humans naturally perform multimodal observations and

examinations using common sense and established knowledge
in daily life.

The scene contains [green block, i
orange block, yellow block]

knock_on(yellow block)

he material cannot be certainly
confirmed according to the impact

- sound. It could be plastic with a 47%
“ | chance, or ceramic with a 35%
| chance.

» Robot well-equipped with multiple sensors and LLMs Y veomgetioon |

X itis lightweight.

» choose stimuli to attend to, avoiding eagerly being bogged down into
details

touch(orange block)
3 \{ ;
‘ It feels hard. MES

pick_up(orange block)

» respond accordingly to the resulting sensations in the context of a s
SpeCifiC taSk. ‘LL—M‘ | picked up the orange block '

because the sound from knocking
was inconclusive, but the weight
and feel were both consistent with
a plastic cube.

6

Fig. 1: Given instruction from a human, the robot recurrently
“chats” with the environment to obtain sufficient information
for achieving the task. An LLM generates action commands
to interactively perceive the environment; And in response,
the environment provides multimodal feedback (MF) through
multimodal perception modules.

R L E PN

[J
I n t ro u Ct I O n x'a‘y“%f}; ShanghaiTech University

* Interactive Multimodal Perceptions
* Like humans, robots can perceive the environment in either a passive or an interactive way

* Interactive perception is complex and requires a mediating system to handle multiple types of
sensory data.

e Chatting with the Environment

* In terms of generalizability, the knowledge of LLMs allows a behavioral agent to adapt
efficiently to novel concepts and environmental structures.

W2

Fei) k8 R Bk
a C a 1'1,%}:041{5 ShanghaiTech University

= > ViLD

Matcha (multimodal environment chatting agent)

~
* be able to interactively perceive (“chat” with) the environment
through multimodal perception when the information from passive e
visual perception is insufficient for completing an instructed task. e
Task done P0|icy
F 3 » .

®
Weight module ry
! Haptic module ‘
Sound module m
Fig. 2: Overview of Matcha. The framework contains an L.LLM,
, and a language-conditioned

* They connect via language as intermediate . These components communicate with each other with

representation for information exchange. natural language as the intermediate representation. Three
types of language information are involved in composing the

prompt: / is a language instruction from the user, C is a
language command produced by the LLM, and 7 is semantic
feedback from multimodal perceptions. Dotted lines indicate
possibly evoking paths.

LLM backbone

multimodal perception modules

EDADEFD

Initial Prompt

a low-level command execution policy.

W Matcha

Vision
» detect objects with their categories and positions in the scene.

Then, the results will be delivered to a policy module for
identification and execution.

Impact Sound

Weight

Haptics

Execution Policy

T B R K

¢/ ShanghaiTech University

& ViLD

g \,
£ -

Task done PO"Cy
F L A—

Tnitial Prompt *..; Sound module | 1

Fig. 2: Overview of Matcha. The framework contains an LLLLM,
, and a language-conditioned
. These components communicate with each other with
natural language as the intermediate representation. Three
types of language information are involved in composing the
prompt: / is a language instruction from the user, C is a
language command produced by the LLM, and 7/ is semantic
feedback from multimodal perceptions. Dotted lines indicate
possibly evoking paths.

2

| Experiments

* Experimental Setup

TABLE II: Effect of different LLMs on success rate.

o))) | Materials | Impact Sound | Haptics | Weight |
* arobotisinstructed to pick up an object that is referred to by ez osonant “hard and cold”, | “heavy”, “300g"
a latent property — material — which is, however, not visually and echoing”, | “rigid, cold, and
T . “metallic”, smooth”
distinguishable. “ringing”
* several blocks in various colors, materials, weights and surface | Glass “tinkling”, “tin- | “hard”, “hard | "a lile bit
. kling and brittle” | and smooth”, | heavy”, “150g”
textures and placed on the table next to a brown container cold nd
smooth”
Ceramic “clinking and rat- | “hard”, “tough” “average
tling”, “rattling”, weight”, “not
“tinkling and brit- too light nor
. tl 44 t t h ”’
e Experiments are done in CoppeliaSim3 simulations ¢ i‘l"oog‘,’," eavy
Plastic “dull”, “muffled” | “hard”, “soft” “light”, “30g”
Fibre “muted”, “silent” | “soft”, “flexible” | “lightweight”,
“underweight”,
“log’,
LLM Type of Description Success Rate o _ .
Indistinct 19.05% TABLE I: Property descriptions of different materials.
text-ada-001 ..
Distinct 28.57%
.. Indistinct 56.67%
text-davinci-003 Distinct 90.57%

1) k¥ A Bk

’¢/ ShanghaiTech University

| Experiments

e Case Studies

H : “pick up th tal block™ in the scene that contai
Human: “pick up the fibre block” in the scene that contains [yellow bllcl’rcri(anre dplifo Cllip gr: err?lealecl) Ck]oc o the seene Miatsontains lorange

block, red block, green block].

Al: robot.touch(red block)
Feedback: It feels cold and smooth.
Al: robot.touch(green block)
Feedback: It feels flexible.

Al: robot.knock on(green block)
Feedback: It sounds muted.

Al: robot.weigh(green block)
Feedback: It weighs underweight.
Al: robot.pick up(green block)
Human: Explain why.

AlI: The object is likely to be made of fibre due to its weight, flexibility, ; ;
muted sourjld and smoz)/th feeling. Therefore, I selected th% green blocky Al The sound, weight, and feehng

. ; : &% of the object all indicate that it is a ‘ "
ZIS thc;)flbre block and used the robot.pick up() skill to pick it up. —— ObJJect Therefore, I chose to pick up the orange block.
one

done()

Al: robot.knock on(orange block)
Feedback: The material cannot be certainly confirmed according to
the impact sound. It could be plastic with a 30% chance, or metal
with a 24% chance.

Al: robot.weigh(orange block)
Feedback: It weighs heavy.

Al: robot.touch(orange block)
Feedback: It feels rigid, cold,
and smooth.

Al: robot.pick up(orange block)
Human: Explain why.

o . R LT
‘ S u m m a ry & D I SC u S s I O n j#‘ ShanghaiTech Universi—::

 demonstrate the superiority of using an LLM to realize interactive multimodal
perception.

* propose Matcha, a multimodal interactive agent augmented with LLMs, and evaluate
it on the task of uncovering object latent properties.

* Generalizability Evaluation
* Property Combination
 Utility Reasoning

CRES . . N
O] FAD) k¥ BBk

‘04%5%:{* ShanghaiTech Universi ty
o

Code as Policies: Language Model Programs for Embodied Control

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, Andy Zeng

Robotics at Google

Code as Policies: Language Model Programs for Embodied Control

https://arxiv.org/pdf/2209.07753.pdf

40 ki R A

A & ¢ ShanghaiTech University
Irecn oS

W Background

* Robots require the language to be grounded in order to establish a
connection between the physical world, words, percepts, and actions.

User

* rule-based methods: Use lexical analysis to understand language and Large «--~ Stack the blocks on the empty bowl. (8)
inform policies, but struggle with new instructions. 'I;na::;:age K

e data-driven methods: Learn language-to-action directly, but need a lot
of data and can be expensive on real robots.

l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:

if is_empty(bowl_name):
empty_bowl = bowl_name _
M : : M ol sbzga:tac = [empt oW, + ock_names | 1’
how can LLMs be applied beyond just planning a sequence of skills? Jéickfbjecé(obﬁs Eoy;:ac;l Plock-nemss 1

def is_empty(name): #
def stack_objects(obj_names): ’

n_objs = len(obj_names)
for i in range(n_objs - 1):

» orchestrating planning, policy logic, and control

obj0 = obj_names[i + 1]
obj1 = obj_names[i]
(objo, obj1)

Code-completion synthesizes Python programs from docstrings. . _ _ 3
Fig. 1: Given examples (via few-shot prompting), robots can use code-writing
large language models (LLMs) to translate natural language commands into robot

* Models can be reused to write robot policy code using natural policy code which process perception outputs, parameterize cont-ol primitives,
recursively generate code for undefined functions, and generalize to new tasks.
language commands.

* Policy code can process perception outputs and control primitive
APIs.

W Code as Policies

» CaP: a robot-focused approach to executing language model-generated programs (LMPs) on real systems.

e Pythonic LMPs can define sophisticated policies using:

* Classic logic structures such as sequences, selection (if/else), and loops (for/while) to assemble new behaviors
at runtime.

e Third-party libraries for spatial-geometric reasoning, such as NumPy for point interpolation and Shapely for
shape analysis and generation.

* LMPs can be hierarchical, allowing for the recursive definition of new functions, the accumulation of libraries, and
self-architecting a dynamic codebase over time.

e Across multiple robot systems, they show that LLMs can independently interpret natural language commands to
generate LMPs representing reactive low-level policies (e.g., PD or impedance controllers) and waypoint-based
policies (e.g., for vision-based pick and place or trajectory-based control).

) bR B A

/) ShanghaiTech University

W Code as Policies

react to perceptual # stack the blocks in the empty bowl.

empty_bowl_name = parse_obj(’empty bowl’)

e parameterize control primitive APls block_names = parse_obj(’blocks”)
-] obj_names = [empty_bowl_name] + block_names
 are directly compiled and executed on a robot stack_objs_in_order (obj_names=obj_names)

Functions defined by LMPs can progressively accumulate over time

define function stack_objs_in_order (obj_names).
def stack_objs_in_order(obj_names):
for i in range(len(obj_names) - 1):

put_first_on_second(obj_names[i + 1], obj_names[i])

T b R ek

¢/ ShanghaiTech University

W Code as Policies

* Prompting Language Model Programs

* Hint: import statements that inform the and type hints
on how to use those APIs.

* Examples: instruction-to-code pairs that present few- objs = [’blue bowl’, ’red block’, ’red bowl’, ’blue block’]
" . " # move the red block a bit to the right.
shot "demonstrations" of how natural language L T e

instructions should be converted into code. put_first_on_second(’red block’, target_pos)
put the blue block on the bowl with the same color.
put_first_on_second(’blue block’, ’blue bowl’)

 Example Language Model Programs (Low-Level) objs = [’blue bowl’, ’red block’, ’red bowl’, ’blue block’]
the bowls.
* Third-party libraries ret_val = [’blue bowl’, ’red bowl’]
. . . # sea-colored block.
* First-party libraries ret_val = ’blue block’

the other block.
ret_val = ’red block’

* Language reasoning

W Code as Policies

* Example Language Model Programs (High-Level)
e Control flows: allow using control structures.

* LMPs can be composed via nested function calls.

* LMPs can hierarchically generate functions.

* High-level LMPs can also follow good abstraction practices and avoid
"flattening" all the code logic onto one level.

* We use the function- generating LMP to write these undefined
functions and add them to the scope.

e Combining control flows, LMP composition, and hierarchical
function generation.

¢/ ShanghaiTech University

while the red block is to the left of the blue bowl, move it to the
right 5cm at a time.
while get_pos(’red block’)[@] < get_pos(’blue bowl’)[0]:
target_pos = get_pos(’red block’) + [0.05, @]
put_first_on_second(’red block’, target_pos)

objs = [’red block’, ’blue bowl’, ’blue block’, ’red bowl’]
while the left most block is the red block, move it toward the right.
block_name = parse_obj(’the left most block’)
while block_name == ’red block’:
target_pos = get_pos(block_name) + [0.3, @]
put_first_on_second(block_name, target_pos)
block_name = parse_obj(’the left most block’)

define function: get_objs_bigger_than_area_th(obj_names, bbox_area_th).
def get_objs_bigger_than_area_th(obj_names, bbox_area_th):
return [name for name in obj_names
if get_obj_bbox_area(name) > bbox_area_th]

detine function: get_obj_bbox_area(obj_name).
def get_obj_bbox_area(obj_name):
x1, y1, x2, y2 = get_obj_bbox_xyxy(obj_name)
return (x2 - x1) x (y2 - y1)

R e T

e o S
ode as Policies N Sl ey

« Language Model Programs as Policies

 In the context of robot policies, LMPs can compose perception- to-control feedback logic given natural
language instructions, where the high-level outputs of perception model(s) (states) can be programmatically
manipulated and used to inform the parameters of low-level control APls (actions).

» The benefits of LMP-based policies are threefold

» they can adapt policy code and parameters to new tasks and behaviors specified by unseen natural
language instructions.

« can generalize to new objects and environments by bootstrapping off of open-vocabulary perception
systems and/or saliency models.

« Don’t require any additional data collection or model training.

.ﬁ;’z—/%r %9\% m‘a R

) kiR B

ShanghaiTech University

W Experiments

CaP: Drawing Shapes via Generated Waypoints

CaP: Pick & Place Policies for Table-Top Manipulation

CaP: Table-Top Manipulation Simulation Evaluations

CaP: Mobile Robot Navigation and Manipulation

Take the coke can from the desk and put it in the middle
of the fruits on the table.

® Put the blocks in bowls with non-matching colors ® Wait until you see an egg and put it in the green plate ® Draw a smaller pyramid a little bit to the left of the pyramid ®

® Put the blocks in a vertical line 20 cm long and 10

® Put away the coke can and the apple in their

® Put the darkest object in the plate that has the apple ® Draw a square around the sweeter fruit corresponding bins

cm below the blue bowl

Fig. 2: Code as Policies can follow natural language instructions across diverse domains and robots: table-top manipulation (a)-(b), 2D shape drawing (c), and mobile
manipulation in a kitchen with robots from Everyday Robots (d). Our approach enables robots to perform spatial-geometric reasoning, parse object relationships, and form
multi-step behaviors using off-the-shelf models and few-shot prompting with no additional training. See full videos and more tasks at code-as-policies.github.io

AN bR A

W Discussion & Limitation

* CaP generalizes at a specific layer in the robot stack.
e CaP fits into systems with factorized perception and control.

* Our method inherits LLM capabilities unrelated to code writing, such as supporting instructions
with non-English languages or emojis (Appendix N).

e CaP can express cross-embodied plans that perform the same task differently depending on the
available APlIs .

* Limitation
* Perception APIs limitations, e.g. visual-language models cannot describe some trajectories, and only
limited primitive parameters can be adjusted.
» Struggles with longer or complex commands, or those operating at different abstraction levels from
given examples.
* Assumes all given instructions are feasible and cannot predict correct response beforehand.

.ﬁ;’z—/%r %9\% m‘a A

W LETY

ShanghaiTech University

Thanks

