Text2Reward: Dense Reward
Generation with Language Models
for Reinforcement Learning

Under review as a conference paper at ICLR 2024

TEXT2REWARD: RFE D S ING WITH LANGUAGE
MODELS FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

8866

INTRODUCTION

*Reward shaping

Design reward functions that guide an agent towards desired behaviors more
efficiently

* Traditional RL
manually designing rewards based on expert intuition and heuristics
- time-consuming, demands expertise and can be sub-optimal.

* Inverse reinforcement learning

- necessitates a large amount of high-quality trajectory data

* Preference Learning

- requires human-annotated preference data

<

Data-free Automates the generation and shaping of
dense reward function

TextzReward

*Given a goal described 1n natural language, TEXT2REWARD
generates shaped dense reward functions as an executable
program grounded 1n a compact representation of the
environment

 zero-shot and few-shot dense reward generation can achieve
similar or better task success rates and convergence speed
than expert-written reward codes

* allow iterative refinement with human feedback

Ll
« Real robot experiments o~
> Feedback: keep the chair standing
Dense reward function
| | def
Goal ir to the marked position o
n GPT-4

I

g
|

Gy

nnnnnnnnnnnnnnn

shaped dense reward

*Task completion rewards

esparse and delayed

* A shaped dense reward function

*It encourages key intermediate steps and regularization that
help achieve the goal.

*It can take different functional forms at each timestep, instead
of being constant across timesteps or just at the end of the
episode.

APPROACH

Feedback: keep the chair standing

Dense reward function

def compute_reward(self, action):

EE approach chair

Goal: push the chair to the marked position reward += -dist_ee_to_chair
L # Keep chair standing
chair_tilt = np.arccos(z_axis_chair[2])
Environment description GPT-4/ # Stage reward

class BaseEnv:
self.chair: ArticulateObject

if chair_tilt < 0.2 * np.pi: Poli
if dist_ee_to_chair < 0.1: RLtralnlng\ ey

=i Rollout

self.robot: DualArmPanda stage_reward += 2 =
class ArticulateObject:

self.pose: ObjectPose G else:

get the point cloud of the object stage_reward = -5

def get_pcd(self) np.ndarray[(N,3)] return reward
class DualArmPanda:

3D positions of 4 gripper fingers - .

self.ee_coords np.ndarray[(4,3)] 2 Expert abstraction Environment @

e Instruction

* natural language sentence

* [t can be provided by the user, or it can be one of the subgoals for a long-
horizon task, planned by the LLM

APPROACH

Feedback: keep the chair standing

Dense reward function

def compute_reward(self, action):

X o # EE approach chair
Goal: push the chair to the marked position reward += -dist_ee_to_chair

Y # Keep chair standing

chair_tilt = np.arccos(z_axis_chair[2])

Stage reward

if chair_tilt < ©.2 * np.pi: N
if dist_ee_to_chair < 0.1: RLtraining\ Policy

stage_reward += 2

Environment description GPT-4/
class BaseEnv:

self.chair: ArticulateObject
self.robot: DualArmPanda

=i Rollout

\

class ArticulateObject:

self.pose: ObjectPose) else:
get the point cloud of the object stage_reward = -5
def get_pcd(self) np.ndarray[(N,3)] return reward

class DualArmPanda:

3D positions of 4 gripper fingers Envi ;
self.ee_coords np.ndarray[(4,3)] Expert abstraction nvironmen

A

 Environment abstraction

* a compact representation in Pythonic style

* general, reusable prompts

APPROACH

Feedback: keep the chair standing

Dense reward function

def compute_reward(self, action):

EE approach chair

Goal: push the chair to the marked position reward += -dist_ee_to_chair
2 # Keep chair standing
chair_tilt = np.arccos(z_axis_chair[2])
Environment description # Stage reward

class BaseEnv: if chair_tilt < 0.2 * np.pi:

if dist_ee_to_chair < 0.1: RLtraining\
;s

self.chair: ArticulateObject
self.robot: DualArmPanda
class ArticulateObject:

Policy

=i Rollout

stage_reward += 2

self.pose: ObjectPose 7 : else:
get the point cloud of the object stage_reward = -5
def get_pcd(self) np.ndarray[(N,3)] return reward

class DualArmPanda:

3D positions of 4 gripper fingers Envi ;
self.ee_coords np.ndarray[(4,3)] Expert abstraction nvironmen

A

*Background knowledge

* provide functions , e.g., NumPy/SciPy functions , and its usage examples

APPROACH

Feedback: keep the chair standing

Dense reward function

def compute_reward(self, action):
EE approach chair
Goal: push the chair to the marked position reward += -dist_ee_to_chair
Y # Keep chair standing
chair_tilt = np.arccos(z_axis_chair[2])
Environment description \ GPT-4/ # Stage reward
class BaseEnv: Codex ... if chair_tilt < ©.2 * np.pi: X
self.chair: ArticulateObject ™ 3 if dist_ee_to_chair < 0.1: RLtraining\ Po-llcy Rollout
self.robot: DualArmPanda [P\ E’ stage_reward += 2 = < i
class ArticulateObject: (ﬂ@ .
self.pose: ObjectPose <R 7‘- else:
get the point cloud of the object stage_reward = -5
def get_pcd(self) np.ndarray[(N,3)] return reward
class DualArmPanda:
3D positions of 4 gripper fingers " .
self.ee_coords np.ndarray[(4,3)] 2 Expert abstraction Environment @

* Few-shot examples

* a pool of pairs of instructions and verified reward codes.

 Sentence-T5 embeddings -> encode the instructions

* for a new instructions -> retrieve the top-k similar instructions and concatenate the
instruction-code pairs as few-shot examples.

APPROACH

Feedback: keep the chair standing

Dense reward function

def compute_reward(self, action):

EE approach chair

Goal: push the chair to the marked position reward += -dist_ee_to_chair
Y # Keep chair standing
chair_tilt = np.arccos(z_axis_chair[2])
Environment description GPT-4/ # Stage reward
class BaseEnv: if chair tilt < 0.2 * np-pi:
self.chair: ArticulateObject if dist_ee_to_chair < 0.1: RL training

Policy

self.robot: DualArmPanda stage_reward += 2 o= ===t “Rlom
class ArticulateObject:

self.pose: ObjectPose SRR else:

get the point cloud of the object stage_reward = -5

def get_pcd(self) np.ndarray[(N,3)] return reward
class DualArmPanda:

3D positions of 4 gripper fingers »]

self.ee_coords np.ndarray[(4,3)] S Expert abstraction Environment @

* Reward code

* focus on the reward code given its interpretability.

APPROACH

Feedback: keep the chair standing

Dense reward function

def compute_reward(self, action):

EE approach chair

Goal: push the chair to the marked position reward += -dist_ee_to_chair
Y # Keep chair standing
chair_tilt = np.arccos(z_axis_chair[2])
Environment description \ GPT-4/ # Stage reward
class BaseEnv: if chair tilt < 0.2 * np-pi: "
self.chair: ArticulateoObject if dist_ee to_chair < ©.1: RL training Policy

self.robot: DualArmPanda stage_reward += 2 o= ===t “Rlom
class ArticulateObject:

self.pose: ObjectPose DS else:

get the point cloud of the object stage_reward = -5

def get_pcd(self) np.ndarray[(N,3)] return reward
class DualArmPanda:

3D positions of 4 gripper fingers »]

self.ee_coords np.ndarray[(4,3)] S Expert abstraction Environment @

*Reducing error with code execution

* execute the code in the code interpreter.

» decreases error rates from 10% to near zero.

Prompt

You are an expert in robotics, reinforcement learning and code generation. We are going to use
a Franka Panda robot to complete given tasks. The action space of the robot is a normalized

‘Box (-1, 1, (7,), float32)'. Now I want you to help me write a reward function for reinforcement
learning. I’11 give you the attributes of the environment. You can use these class attributes
to write the reward function.

Typically, the reward function of a manipulation task is consisted of these following parts:
1. the distance between robot’s gripper and our target object

2. difference between current state of object and its goal state

3. regularization of the robot’s action
4.,
5.

[optional] extra constraint of the target object, which is often implied by task instruction
[optional] extra constraint of the robot, which is often implied by task instruction

class BaseEnv (gym.Env) :
self.cubeA : RigidObject # cube A in the environment
self.cubeB : RigidObject # cube B in the environment
self.cube_half_size = 0.02 # in meters
self.robot : # a Franka Panda robot

class PandaRobot:
self.ee_pose : ObjectPose f
self.l1finger : LinkObject # left finger of robot’s gripper
self.rfinger : LinkObject # right finger of robot’s gripper
self.gpos : np.ndarray[(7,)] # joint position of the robot
self.qvel : np.ndarray[(7,)] # Jjoint velocity of the robot
self.gripper_openness : float # openness of robot gripper, normalized range in [0, 1]
def check_grasp(self, : T n [J , inl |, max_angle=85) -> bool
indicate whether robot gripper successfully grasp an object

class ObjectPose:

self.p : np.ndarray[(3,)] # 3D position of the rigid object
self.q : np.ndarray|[(4,)] # quaternion of the rigid object
def inv(self,) -> ObjectPose # return a ‘ObjectPose‘ class instance, which is the inverse

of the original pose

Prompt

class ArticulateObject:
self.pose : ObjectPose # 3D position and quaternion of the articulated object
self.velocity : np.ndarray[(3,)] # linear velocity of the articulated object
self.angular_velocity : np.ndarray[(3,)] # angular velocity of the articulated object
self.gpos : np.ndarray|[(K,)] # position of the articulated object joint
self.qvel : np.ndarrayl[(K,)] # velocity of the articulated object joint
def get_pcd(self,) -> np.ndarray[(M,3)] # point cloud of the articulated object surface

in the world frame

Additional knowledge:

1. A staged reward could make the training more stable, you can write them in a nested
if-else statement.

2. ‘ObjectPose' class support multiply operator ‘x', for example: ‘ee_pose_wrt_cubeA =
self.cubeA.pose.inv () = self.robot.ee_pose’.

3. You can use ‘transforms3d.quaternions' package to do quaternion calculation, for example:
‘ginverse(quat: np.ndarray|[(4,)]) "' for inverse of quaternion, ‘gmult (quatl: np.ndarrayl[(4,)],
quat2: np.ndarrayl[(4,)]) " for multiply of quaternion, ‘quat2axangle(quat: np.ndarrayl[(4,)]1)"
for quaternion to angle.

I want you to fulfill the following task: {instruction}

1. please think step by step and tell me what does this task mean;

2. then write a function that formats as ‘def compute_dense_reward(self, action) -> float'‘ and
returns the ‘reward : float' only.

3. When write code, you can also add some comments as your thoughts.

Generated reward Function

Sample of zero-shot generated reward function on MANISKILL2 Pick Cube task:

import numpy as np

def compute_dense_reward(self, action):
Normalize action
action = np.clip(action, -1, 1)

Calculate distance between gripper and cube

gripper_pos = self.robot.ee_pose.p

cube_pos = self.cubeA.pose.p

dist_gripper_cube = np.linalg.norm(gripper_pos - cube_pos)

Calculate distance between cube and goal
goal_pos = self.goal_position

dist_cube_goal = np.linalg.norm(goal_pos - cube_pos)

f Check if the robot is grasping the cube

grasping_cube = self.robot.check_grasp(self.cubelh)

Define reward components

reward_dist_gripper_cube = -1.0 x dist_gripper_cube
reward_dist_cube_goal = -1.0 = dist_cube_goal
reward_grasping_cube = 1.0 if grasping_cube else -1.0

Define weights for reward components
weight_dist_gripper_cube = 0.3
weight_dist_cube_goal = 0.5
weight_grasping_cube = 0.2

Calculate total reward

reward = weight_dist_gripper_cube * reward_dist_gripper_cube \
+ weight_dist_cube_goal x reward_dist_cube_goal \
+ weight_grasping_cube * reward_grasping_cube

Regularization on action
reward —= 0.01 % (action *% 2) .sum()

Prompt-few shot

An example:

Tasks to be fulfilled: {instruction}
Corresponding reward function:
*Y'python

AN T

Generated reward Function

Sample of few-shot generated reward function on MANISKILL2 Pick Cube task:

import numpy as np

def compute_dense_ reward(self, action):
reward = 0.0

Check if the cube is placed at the goal position and the robot is static
cube_at_goal = np.linalg.norm(self.cubeA.pose.p - self.goal_position) <= self.cube_half_size
is_robot_static = np.max(np.abs(self.robot.qvel)) <= 0.2

If the cube is placed at the goal and the robot is static, return a high reward
if cube at _goal and is_robot_ static:

reward += 2.25

return reward

reaching reward, encourages the robot to reach the cube
gripper_pos = self.robot.ee_pose.p

obj_pos = self.cubeA.pose.p

dist_to _obj = np.linalg.norm(gripper _pos - obj_pos)
reaching reward = 1 np.tanh(5 » dist_to_obij)

reward += reaching_reward

grasp reward, encourages the robol to grasp the cube
is_grasped = self.robot.check_grasp(self.cubeA, max_angle=30)
if is_grasped:

reward += 0.25

placement reward, encourages the robot to place the cube at the goal

if is_grasped:
dist_to_goal = np.linalg.norm(self.cubeA.pose.p - self.goal position)
placement_reward = 1 np.tanh (5 » dist_to_goal)
reward += placement_reward

regularization term on robot’s action
action_reqg = -np.sum(np.square(action)) / len(action)
reward += 0.1 * action_reg

return reward

Results- manipulation

Oracle — 7ero-shot — Few-shot

Turn Faucet Open Cabinet Door

* Few-shot outperforming zero-shot

* Zero-shot sometimes outperforming few-shot

* the quality and relevance of the few-shot examples

Results- manipulation-zero shot

* Few-shot outperforming zero-shot

* Zero-shot sometimes outperforming few-shot

* the quality and relevance of the few-shot examples

Results- manipulation

ezero-shot Few-shot

Results- locomotion-zero shot

* Back-flip

* Front-flip move

Results- REAL ROBOT
MANIPULATION

*necessitating only minor calibration ggp ,

and the introduction of random noise -
for sim-to-real transfer.

*a depth camera to get the estimated
pose of objects

APPROACH

Feedback: keep the chair standing

Dense reward function

def compute_reward(self, action):

EE approach chair
reward += -dist_ee_to_chair

Goal: push the chair to the marked position

Y # Keep chair standing
chair_tilt = np.arccos(z_axis_chair[2])
Environment description \ GPT-4/ # Stage reward
class BaseEnv: if chair_tilt < 0.2 * np.pi: "
self.chair: ArticulateObject if dist_ee_to_chair < 0.1: RLtraining\ PO_|ICY Rollout
self.robot: DualArmPanda stage_reward += 2 = i T il
class ArticulateObject:
self.pose: ObjectPose SRR else:
get the point cloud of the object stage_reward = -5
def get_pcd(self) np.ndarray[(N,3)] return reward
class DualArmPanda:
3D positions of 4 gripper fingers » .
self.ee_coords np.ndarray[(4,3)] 5 Expert abstraction Environment @

*Improve reward with human feedback

* Users then offer critical insights and feedback based on the video, identifying areas
of improvement or errors..

* encourages the participation of general users,

Results

e Oracle iterO iterl —jter2

Stack Cube-Interactive

Zero-shot

2M 4M 6M 8M

Few-shot

Step

2M 4M 6M 8M

*Improve reward with human feedback

* Users then offer critical insights and feedback based on the video, identifying areas
of improvement or errors..

* encourages the participation of general users,

er LLM

— GPT-4

Window Close Button Press

Drawer Open

1 1 1
0.8 0.8 A 0.8
A re I\ |
\ / }
| /
0.6 0.6 |- 0.6 (
| [
0.4 0.4 | 0.4 /
0.2 0.2 J 0.2 ‘
[Al
[Ste / Step
0 A 2 0 P 0 / r
200k 400k 600k 800k 200k 400k 600k 800k 200k 400k 600k 800k
Sweep Into Door Close Handle Press
1 1 - 1 i N A T, AT
i \ f‘
0.8 0.8 I\/ 0.8 1V
V |
[N
0.6 0.6 [06 |
“‘ ‘
0.4 0.4 4|
0.2 02 | 0.2 |
/ | S |
N DY Ste te Step
0 P o R, o ;
200k 400k 600k 800k 200k 400k 600k 800k 200k 400k 600k 800k
Door Unlock Drawer Close
1
: A
A | /
M\ | v
0.8 0.8 Ja) | |
\ U
A L
0.6 " A\ 0.6 Y
:‘ 4" Dl ‘
4 Al "\ A
0.4 N 0.4
0.2 A \A/ 0.2
AR st Ste
v/ " ep
0 d AT P
200k 400k 600k 800k

VU IR SR S

200k 400k 600k 800k

Comparing work

Language to Rewards for Robotic Skill Synthesis

Wenhao Yu; Nimrod Gileadi*, Chuyuan Fu] Sean Kirmani', Kuang-Huei Lee’,
Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever,
Jan Humplik, Brian Ichter, Ted Xiao, Peng Xu, Andy Zeng, Tingnan Zhang,
Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, Fei Xia

Google DeepMind

User

Make robot dog stand up on two feet.
|

Rewards form /~Reward Translator . v : l ™\
: . Motion Descriptor [«
suitable for use with MPC

[start of description]

The torso of the robot should pitch upward at 90.0 degrees.

The height of the robot's CoM or torso center should be at 0.7 meters.
front_left foot lifted to 0.7 meters high.

front_right foot lifted to 0.7 meters high.

[end of description]

M
R(S7a) — _Zwi ‘N (Ti (S,a,?,bi))) {
1=0

‘ Reward Coder I<

¥

set_torso_rewards(height=0.7, pitch=np.deg2rad(90))

set_feet_pos_rewards(‘front_left', height=0.7)
set_feet_pos_rewards('back_left', height=0.0)
set_feet_pos_rewards(‘front_right', height=0.7)
set_feet_pos_rewards('back_right, height=0.0)

_ | J
i

Motion Controller

Comparing work

Self-Refined Large Language Model as Automated
Reward Function Designer for Deep Reinforcement
Learning in Robotics

Natural Language Input Feedback Prompt

I'l want to design a reward function for a deep reinforcement ! [l [Feedback History]

I learning task. LLM
I
Initial _Self_ [Overall Assessment]
. Refinement' The performance of the designed reward function is bad.
Design Loop

I [Environment description]

Il have a quadruped robot.
I

I [Task description]

I This task has the following goals:

1. The quadruped robot should run forward straightly as fast
I'as possible.

:2. The quadruped robot cannot fall over.

[Training Process]

The training reward converges after [NUM] steps.
The average timestep for one episode is [NUM].
¢ The average reward is [NUM)] for one episode.

Reward Function

I [Observable states] [Objective Metrics]

I

I

!

I

!

I

I

!

I

I

I

I The following states are available for the reward function ! The robot's average linear velocity on the x-axis is [NUM].

I design. I Evaluation Results $Ee rogo:'s average ;inear ve:ocity on me y-axis is mz%

11. The Cartesian position of the quadruped robot. ! o ' ' e robot's average linear velocity on the z-axis is :

! i ! 1. Tralnmg Process bad The robot's average angular velocity on the x-axis is [NUM].

2. The rotation of the quadruped robot. . . _) X

'3, The linear velocity of the quadruped robot. : 2. Objective Metrics The robot's average angular velocity on the y-axis is [NUM].
I
I
!
I
!
I
I
!
I

:4_ . 3. Success Rate The robot's average angular velocity on the z-axis is [NUM].
' rRul 4. Overall Assessment -

[Rules]

: STl Ty T v nin [Success Rate]

e ‘good’ The success condition is: the robot should

(1T velocity greater than [NUM] without falling.

1

I

1

Function Re-design the reward function based on the given feedback

Comparing work

Iteration 0 (Initial)

Reward Function:

R=ry, + Tha + Ty + Trot

1, p.=0.5,
Ty, = Vgs Thal = .
e bl {0, otherwise,

Iteration 1
Reward Function:
R =2x%7ry, + Tpal + Tyz + Trot + Paction

1 > 0.5
r'U, - vxarbal - {0’ g;h_ : ’
? S “1587

Ty =1— |'vy| = |vz), ot =1 — |0yaw|

Iteration 2 (final)

Reward Function:

R =2%ry, + Tpal + T'yz + Trot + Paction
1, p.=0.5,

Ty, = VUgyThal = .

v o {0, otherwise,

Ty =1 = 2% (Jvy| + |v2]), rot = 1 — |Oyaw]|

ry=1=vy,Trot =1 — |Oyaw| =1 2ic lai . 1 =1 2ic lail . 1
action — n 236 action — n 27 4
Evaluation: Evaluation: Evaluation:

SR = 10%, g, = 2.52, g, = —0.11,
Gv. = _0'23a 9p. = 0611 Gaction = 236,
gém“ = —0.07, gémrh = —0.01,90"“ = —0.01

SR = 90%7 gvx = 3.23, gv,, = —0'12,
gv. = —0.22, gy = 0.59, Gaction = 2.74,
9j, = —0.1,gépm_h = —0.02, 9., = —0.01

SR = 98%, g,, = 3.76, g,, = —0.11,
Gv. = _0'21’ 9p. = 061 Gaction = 267,
go'm“ = —004, gépitch = —001, gévw = 0.01

Weight/Parameter Adjustment

Reward Component Adjustment

Comparing work

Iteration 0
(Initial)

Iteration 1

('
t=4s
Iteration 2 ‘
(final)
—_—

Table 1: Success rates of different reward functions and the number of self-refinement iterations (Iter.)
used for Rl{eﬁned-

Success Rate SR
Robotic SyStem Task RInitial RRCﬁncd RI\"I&HLI?LI Iter.

Ball Catching 100% 100% 100% 0

Manipulator Ball Balancing 100% 100% 98% 0
Ball Pushing 0% 93% 95% 5

Velocity Tracking 0% 96% 92% 3

Quadruped Running 10% 98% 95% 2
Walking to Target 0% 85% 80% 5

Hovering 0% 98% 92% 2

Quadcopter Wind Field 0% 100% 100% 4
Velocity Tracking 0% 99% 91% 3

Comparing work

Guiding Pretraining in Reinforcement Learning with Large Language Models

Yuging Du "' Olivia Watkins *' Zihan Wang? Cédric Colas’** Trevor Darrell! Pieter Abbeel '
Abhishek Gupta’ Jacob Andreas? PMLR

Valid actions: sleep, eat, attack, chop,
drink, place, ma
playing a g
playsr can take
and the items in r

valid actions and objects.

You see plant, tree, and skeleton. You are
targeting skeleton. What do you do?
- Eat plant, chop tree, attack skeleton

current obs}

gt :@

LLM

[o (at | Eimg(ot)a Etext (Cobs(ot))a Etext (gtlk)) ’

sk
9t Ctransition(ot-, ag, 0t+1)

Cut down the tree. “Chop tree”

Dig in the grass.
Attack the cow.

|

LM Embed LM Embed

) o
A(Ctl'ansiti01l(0t~,a'ta 0t+l)7g;)7i € [1k]

A

= Cut down the tree. Ri”t
= Dig in t
= Attack the cow.

grass.

(b) LLM reward scheme. We reward the agent for

(a) Policy parametrization for ELLM. We optionally condition on embeddings of the similarity between the captioned transition and

the goals Frex(g%zk) and state Eexi(Cobs(0t)).

the goals.

Thanks !

i1

ZHEJIANG UNIVERSITY

