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Game Theory

Equilibrium signifies that in a multiparty game, all players have adopted the optimal
strategy and none can improve their performance by altering their own strategy.

(" Nash Equilibrium N : :
: : . ; ; : : | @ | @ | 4 g ai | a; | a3
¥ (e ) = sman?) 2y isra’) at | x [ o [ 10 at | o5 [-105] 84
al 0 2 0 al |-5-10 | -50 | -15-5
« Nash Q.-Learnlng; . 2l 2 0 " al | 50105105
« Mean Field Q-learning;
- HATRPO

/" Stackelberg Equilibrium N\
Vﬂ'll* 2" (S) Z V71-11,7T2* (S)a
V21’7r2* (s,al) = V7r21’7r2(3,a/1).

™

« Asymmetric Q-learning;
K- Bi-level Actor Critic /

68 YO TRy

University of Chinese Academy of Sciences




Motivation

/Stackelberg Game N\ Stackelberg Equilibrium
maxl{jl (7!, 7?)|7? € arg max J3(n*,7%)}, > The paradigm of sequential decision-making is
1 /
1 m* €1l conceptually defined from the perspective of game
max J2(nt, m?), theory.
el » applicable to both cooperative and non-cooperative
Stackelberg Equilibrium gsg\es P P
1 1 )
Ve pav (s) > Vit o (), » surpasses Nash equilibrium in terms of equilibrium
k VT?I’T‘-Z* (s,a') > Vﬂ.21’ﬂ.2(8, al). / determinacy and Pareto optimality.

When SE encounters MARL, we aim to address the following challenges:

® How to make a reinforcement learning algorithm converge to the Stackelberg
equilibrium strategy?

® How to converge to SE policies that require agents act sequentially under the MG
framework where agents act simultaneously?

® How to extend the method to scenarios with more than two agents (n > 2)?
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STMG

N-level optimization
max{jz (7.‘_1:i*177'('7:)|7-‘-.7' c arg maxj] (7.‘.1:]"*1’7_‘_‘7'/)},
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Spatio-Temporal Sequential Markov Game (STMG)
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Definition 1. STMG can be formalized as a tuple A A
(Z,8,{A%iez, P,{V'}iez,7,{0 }icz). In addition to the e - == B
MG defined in 2.1, STMG add the term o', which denotes (D)= E’@ a‘*la_’a—‘
the action order of agent i and O = (o', ...,0") represents
all agents’ action order, indicating the priority/importance of Figure 1: The STMG state transition procedure. It is an extensive
game version of MG, which specifies the decision-making sequence

agents at the decision-making stage.
& & sas / of agents simultaneously.

.

Compared with MG, STMG assumes the form of a sequence decision in both temporal and spatial
domains. Agents with a higher priority have greater initiative, whereas agents with a lower priority are
required to respond to the actions of those with higher priority.
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‘Commencing with a Toy Example
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Terminal

» When the leader commits to taking action, the ideal space for followers to take action is
constrained.

> In the final state, all three joint actions (a} , a3), (al , a2) and (a} , a%) , are Nash equilibrium

(NE) points. However, only the point(ai , a3)is the unique socially efficient (SE) point and
also the global optimum.

Algorithm design requirements :

» All agents possess accurate perceptual awareness of the current state.
» The environmental state and the leader's decision information must be taken into account

during policy evaluation and execution.
LT
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'Heuristic Stackelberg Decision Mechanism for MARL
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/~® Followers directly receive decision information from higher-level agents, and the agent's policy
gradient is updated towards the optimal response to the higher-level agent, resulting in an

approximate solution to the inner optimization problem.

\_® Leaders interact with the environment and perceive the reaction of the inferior agents. Y,

Under the RL training paradigm, all agents possess the capability to maximize their individual utility in

accordance with current conditions, thereby naturally achieving corresponding equilibrium.
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STEP

Implementation :
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Figure 3: The overall architecture of STEP. Left: The workflow of STEP for a comprehensive decision in a time step. Agents base their
decisions on the current situation s;, their self-positioning Priority ID, and the prerequisite actions a; “~" of superior agents. Right: The
structure of N-level policy model. It allows for the|implementation of heterogeneous policies under parameter sharing and the Stackelberg

equilibrium policies under symmetric conditions.

What is a better solution?

Causal Transformer!

Limitations:

» Focus on CTDE/ATSE paradigm;

» Only applicable to situations
where a shared global state is
present.

» Sequential updates result in a
significant increase in training
costs as the number of agents
grows.
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Stackelberg Decision Transformer

The seamless alignment between the hierarchical decision-making structure of SG and the
modeling approach of autoregressive sequence models.
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Stackelberg Decision Transformer

Scalability for Decentralized Execution Systems—Knowledge Distillation

Forward propagation in the Transformer-based STEER teacher network

Backpropagation in multiple MLP-based student networks

Teacher Model
(large neural network)

1 <« _ _
Lstudent — N (log (ﬂ-student (a | 0) T ]'Og (WSTEER (a’ | S)) ?
f i=1

_nS (ﬂ-student (a’ | 0))
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Mean Step Reward

Evaluation

Finding SE Solutions

Mean Step Reward
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Evaluation

Performance in Complex Scenarios
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Evaluation

Ablation Studies

ITB & OTB
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Controlling Large Language Model-based Agents
for Large-Scale Decision-Making: An Actor-Critic
Approach

Bin Zhang
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Existing Work

1. Natural Language Processing
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[E Stk i i ackioie starting point o many times will circle A revolve i total?

Let the radius of circle A be r and the radius of circle B be 3r. The distance circle A travels along the circumference
of circle B s equal to the circumerence of circ
2 = 3. So, circle Awill revolve 3 times in total as it olls around circle B once.

le B, which is 6. The number of revolutions = (6m) / (2rr) = 6rrr /x]

Reflecton:
(1) I have a clear understanding
of the problem

(@) I have used the correct

number of revolutions of circle

Based on the resuls of my self-

reflection, | am confident that my

‘answer is correct. Therefore,

circle A wil revolve 3 times in tota
Ma as it rols around circle B once.

o168

| to consider both the rotation around circle B and the rotation of circle '
Aitself. Therefore, circle Awil revolve 3 times around its own center

' I disagree with you. To find the total number of revolutions, we need
and 1 time around circle B, making a total of 4 revolutions.

p

|

1 48, (1o yourpont, bt )i
!

|

| ﬁ “Thats a valid point, however. ] '
!
!
!
!
|

| ‘The negative side correctly considers both the rotation of circle A

around its own center and its rotation around circle B, while the
affirmative side only considers the rotation around circie B.
‘Therefore, the answer is 4.

Self-collaboration Framework

Figure 2: Framework of Multi-Agent Debate. Here we designate the devil (g) as the affirmative side while the
angel ([ as the negative side. We want the angel to correct the devil's mistakes.

2. Decision Making
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Figure 1: Role-Playing Framework. Our role-playing setup starts with the human user having an
8. develop a trading bot for the stock market. The roles involved in
int agent who is a python programmer and an Al user agent who is a
stock trader. The task is made more specific using our task specifier agent, leading to a well-defined
Al assistant collaboratively communicate by chatting

idea they want to implement
this

task for the assistant to solve. The Al user and

task would be an Al a

with each other in an instruction-following fashion to solve the specified task.
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Figure 2: The proposed architecture of CHATDEV consists of phase-level and chat-level components. | Resrements
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At the phase level, the waterfall model is used to break down the software development process into
St il four sequential phases. At the chat level, each phase is further divided into atomic chats. These atomic
chats involve task-oriented role-playing between two agents, promoting collaborative communication. Instantiating

ed.

Figure 2: Qualitative examples. The correct choices are underlined.

The communication follows an instruction-following style, where agents interact to accomplish a

specific subtask within each chat.
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Figure 2: An overvww of our framework, consisting of five modules: observation, belief, commu-
i ion Module and the Reasoning Module
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Language Models to

details can be found in Appendix A.

and decide on high-level plans. Here we also Figure 1:
show the overall prompt design for leveragmg LLMs to serve as these two modules. More design

Joining for coffee at a cafe

Figure 2: Self-collaboration framework for code generation and its instance.
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Motivation

—

As the number of agents increases, the joint action space grows exponentially.

The limitations of LLMs themselves, such as the issue of hallucinations, can affect the reliability
of decision-making.

Effectively managing tokens or communication resources poses a significant challenge in large-
scale scenarios involving LLM-based agents.

Type Method Target Role Agents Num.
Muti-Aeent Debate (Du et al.) 2 debaters 2
D;b;-te gen MAD (Liang et al.) Task Solver 1 judge + 2 debaters 3

ChatEval (Chan et al.) multi debaters 5
CAMEL (Li et al.) 1 assistant + 1 user 2
AgentVerse (Chen et al.) | role assigner + 2-4 experts + | evaluater 6
Proagent (Zhang et al.) Task Solver 2 cooks 2
Role Playing LLaMAC (ours) 3 critic + 1-50 actors 50
Generative Agents (Park et al.) . 25 agents 25
Community
Werewolf Agents (Xu et al.) Simulator 7 players 7
ReCon (Wang et al.) 6 players 6
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Mothod

1. Multi-agent Actor-Critic architecture

a. critic: Central Coordinator, Balancing Exploration and Exploitation, Task Allocation for Actors

based on Memory Information

b. actor: Interaction with the environment, external feedback

2. Large-scale Multi-Agent System Decision Making
a. Comprehensive Feedback Mechanism
b. Low Access Cost

O - — Suggestion
v, | , Environment Perce‘ptlon Q <& — f—\\
I Text State Generation ) .Q. External Feedback > ~
\/ (s Tool U d l B
~ra 10Ol Usage an d b -
Eﬁ Action Execution m Memory — .H. - = A
- u Environmental ] 00 - Critic 1 Critic 2
< Reward Signal m Short-Term Memory © Exploration  Exploitation
— D
q 000
O E Long-Term Memory == 8 \\ //
- =.
L] Environmental E_) Redundant —+
3 l Reward Signal Information Filtering o A“ssessor
® wee Tool Usage and 2
-] * Action Execution 'Ql Suggestion Internal Feedback
- Environment Perception‘ 'j‘ - > f”
— D > g —
L Text State Generation | External Feedback

Y v Y
Execution

Error Feedback

Critic 1 Critic 2
Exploration Exploitation

Al
Assessor
Veracity-Scrutiny & Belief
Correction

Fail

Succeed

Suggestion

Internal Feedback

g observation

| e
Suggestion j_e =
i )

actor
Plan Confirmation
aAa Refuse
Assessor
T Execute
Actor l
Feedback action

External Feedback

O T

University of Chinese Academy of Sciences



Evaluation

System Resource Allocation
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Evaluation

—(x—p)?
System Resource Allocation G( x) — xye o2
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“ ; // \‘\
’ N
" menscion ©* (The system reward seems to increase as the mean_action increases. The highest reward
Step 10: i ,"\\ is achieved when the mean_action is 5.0. However, the rate of increase in reward seems to be
T /’ I\ slowing down as the mean_action increases, suggesting a possible peak in the reward
2" . . . . . . . .
il i /' \\ function. To maximize rewards, it would be beneficial to explore slightly higher mean_actions
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’ : me;nacélon ' )
Step 20: i fEhy The system reward seems to peak at an average action of 6.4, with a corresponding .
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Evaluation

Grid Transportation
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Table 2: Evaluation results under different grid settings in the Grid Transportation-Easy scene.

Success Steps Feedback Token(x 1k)
2x2 HMAS-2 100% 9.9(2.74) 3.3(2.05) 49.9(17.98)
LLaMAC 100% 7.0(1.79) 2.0(1.26) 23.9(8.38)
2xd HMAS-2 80% 15.5(6.09) 12.3(5.83) 158.4(107.84)
LLaMAC 100% 7.6(1.36) 4.3(1.42) 38.0(10.57)
4x8 HMAS-2 60% 30.6(9.70) 26.1(13.59) 599.3(245.40)
LLaMAC 100% 12.9(2.70) 10.7(3.35) 122.6(30.55)

Table 3: Evaluation results under different grid settings in the Grid Transportation-Hard scene.

Success Steps Feedback Token( x 1k)
2x2 HMAS-2 80% 7.0(5.0) 6.0(9.74) 76.1(116.66)
LLaMAC 100% 4.7(1.35) 3.6(2.80) 28.8(18.49)
2x4 HMAS-2 20% 17.0(9.0) 24.0(20.0) 355.5(291.05)
LLaMAC 90% 7.44(2.95) 10.56(7.54) 94.0(68.09)
4x8 HMAS-2 0% - - -
X LLaMAC 90% 8.44(1.57) 12.11(2.51) 119.8(32.75)




