SELF-RAG: LEARNING TO RETRIEVE, GENERATE, AND CRITIQUE THROUGH SELF-REFLECTION

Akari Asai[†], Zeqiu Wu[†], Yizhong Wang[†][§], Avirup Sil[‡], Hannaneh Hajishirzi[†][§] [†]University of Washington [§]Allen Institute for AI [‡]IBM Research AI {akari, zeqiuwu, yizhongw, hannaneh}@cs.washington.edu, avi@us.ibm.com

ICLR2024 8886

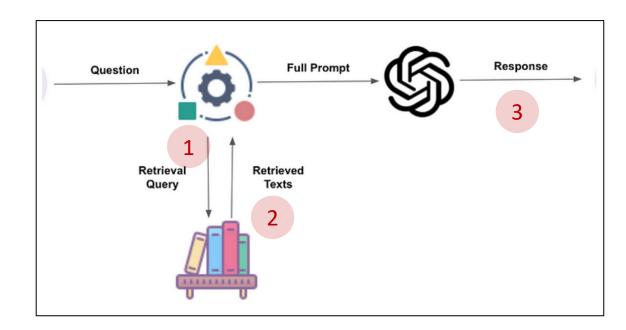
Motivation & Preliminary

- Why is Retrieval Augmented Generation (RAG) important?
 - Reduce factual errors
 - Improve helpfulness/usefulness
- Current Challenges of RAG
 - 1. May hinder the versatility of LLMs --- Learn when to retrieve
 - 2. May introduce unnecessary or offtopic passages
 - --- **Learn** what to retrieve (Part of critique)

3. (weak/small) LLMs may not know how to use the retrieved knowledge.

--- Learn to generate (given retrieved data)

Self-rag: Learning to Retrieve, Generate, and Critique through Self-Reflection

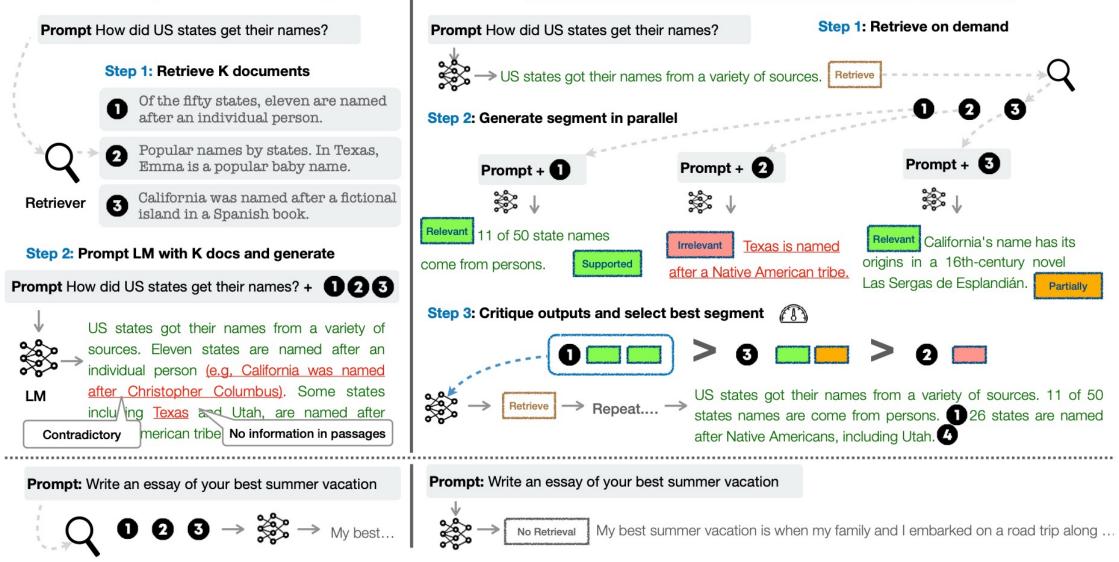


Special Reflection Tokens to Learn

Туре	Input	Output	Definitions
Retrieve	x / x, y	{yes, no, continue}	Decides when to retrieve with $\mathcal R$
ISREL	x, d	relevant , irrelevant	d provides useful information to solve x .
ISSUP	x,d,y	fully supported , partially	All of the verification-worthy statement in y
ISUSE	x,y	supported, no support} { 5 , 4, 3, 2, 1}	is supported by d . y is a useful response to x.

x: query, y: output, d: documents

Retrieval-Augmented Generation (RAG)



Ours: Self-reflective Retrieval-Augmented Generation (Self-RAG)

Figure 1: Overview of SELF-RAG. SELF-RAG learns to retrieve, critique, and generate text passages to enhance overall generation quality, factuality, and verifiability.

Method: Training

Learning to Retrieve\Critique

- Why?
 - Call GPT4 API is too expensive and hard to reproduce.
- Solution
 - Knowledge Distill from GPT4

 $\max_{\mathcal{C}} \mathbb{E}_{((x,y),r) \sim \mathcal{D}_{critic}} \log p_{\mathcal{C}}(r|x,y), \ r \text{ for reflection tokens.}$

Туре	Input	Output	Definitions
Retrieve ISREL ISSUP	$egin{array}{c} x / x, y \ x, d \ x, d, y \end{array}$	{yes, no, continue} { relevant , irrelevant} { fully supported , partially supported, no support}	Decides when to retrieve with \mathcal{R} d provides useful information to solve x. All of the verification-worthy statement in y is supported by d.
ISUSE	x,y	{ 5 , 4, 3, 2, 1}	y is a useful response to x .

Dataset name	category	Data source	the number of instances		
GPT-4 Alpaca	Instruction-following	Open-Instruct	26,168		
Stanford Alpaca	Instruction-following	Open-Instruct	25,153		
FLAN-V2	Instruction-following	Open-Instruct	17,817		
ShareGPT	Instruction-following	Open-Instruct	13,406		
Open Assistant 1	Instruction-following	Open-Instruct	9,464		
Wizard of Wikipedia	Knowledge-intensive	KILT	17,367		
Natural Questions	Knowledge-intensive	KILT	15,535		
FEVER	Knowledge-intensive	KILT	9,966		
OpenBoookQA	Knowledge-intensive	HF Dataset	4,699		
Arc-Easy	Knowledge-intensive	HF Dataset	2,147		
ASQA	Knowledge-intensive	ASQA	3,897		

Total: 150k

Learning to Generate

• Use the learned Critic to augment output

• Then SFT $\max_{\mathcal{M}} \mathbb{E}_{(x,y,r) \sim \mathcal{D}_{gen}} \log p_{\mathcal{M}}(y,r|x).$

Input: How did US states get their names? Input: Write an essay of your best summer vacation Output: 1 of 50 states names come from persons. For instance, Louisiana was named in honor Output: My best summer vacation was a magical escape to the coastal town of Santorini. The azure waters, of King Louis XIV of France and Georgia was named after King George II. charming white-washed building are unforgettable. 🐝 Critic LM Retriever Augmented Output: Retrieve Of the fifty states, eleven are named after an individual person Augmented Output: No Retrieval My best summer Relevant 11 of 50 states' names come from person. Supported Retrieve 2 LOUISIANA: Named in vacation was a magical escape to the coastal town of Santorini. No Retrieval The azure waters, charming white-For instance, Louisiana was named after King Louis XIV, and honor of Louis XIV of France.. washed building are unforgettable experience. Util: 5 Georgia was named after King George II. Partially

Alg	orithm 2 SELF-RAG Training	
1:	Input input-output data $\mathcal{D} = \{X, Y\}$, generator \mathcal{N}	<i>Λ</i> , <i>C</i> θ
2:	Initialize C with a pre-trained LM	
3:	Sample data $\{X^{sample}, Y^{sample}\} \sim \{X, Y\}$	▷ Training Critic LM (Section 3.2.1)
4:	Sample data $\{X^{sample}, Y^{sample}\} \sim \{X, Y\}$ for $(x, y) \in (X^{sample}, Y^{sample})$ do	\triangleright Data collections for C
5:		$\operatorname{r}(x,y)$
6:	Add $\widehat{\{}(x,y,r)\}$ to \mathcal{D}_{critic}	
7:	Update C with next token prediction loss	⊳ Critic learning; Eq. 1
8:	Initialize \mathcal{M} with a pre-trained LM	▷ Training Generator LM (Section 3.2.2)
9:	for $(x,y) \in (X,Y)$ do	\triangleright Data collection for \mathcal{M} with \mathcal{D}_{critic}
10:	Run C to predict r given (x, y)	
11:	Add (x, y, r) to \mathcal{D}_{gen}	
12:	Update \mathcal{M} on \mathcal{D}_{gen} with next token prediction los	s ⊳ Generator LM learning; Eq. 2

Method: Inference

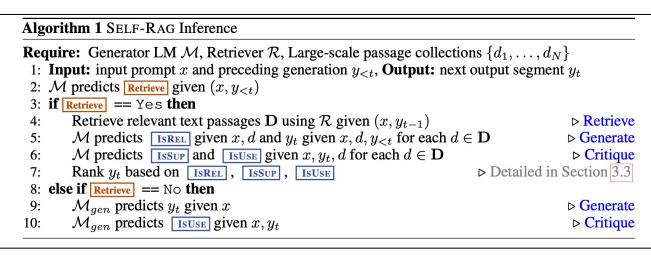
- Step1: Adaptive retrieval with threshold.
- Step2: Call retriever R
- Step3: Tree-decoding with critique tokens.
 - Beam-Search

$$f(y_t, d, \underline{\text{Critique}}) = p(y_t | x, d, y_{< t})) + \mathcal{S}(\underline{\text{Critique}}), \text{ where }$$
(3)

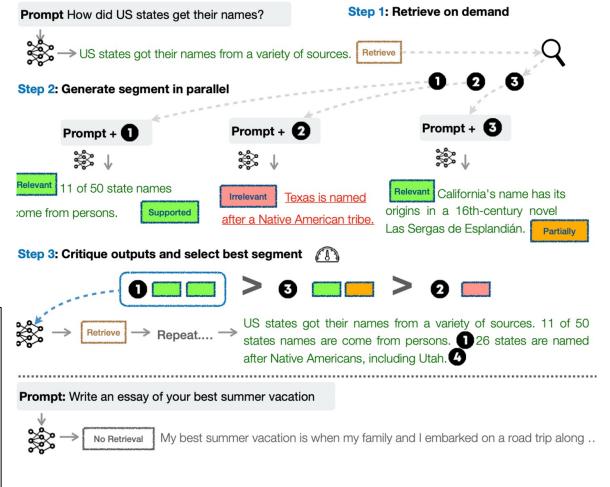
$$\mathcal{S}(\underline{[Critique]}) = \sum_{G \in \mathcal{G}} w^G s_t^G \text{ for } \mathcal{G} = \{\underline{[ISREL]}, \underline{[ISSUP]}, \underline{[ISUSE]}\},$$
(4)

where $s_t^G = \frac{p_t(\hat{r})}{\sum_{i=1}^{N^G} p_t(r_i)}$ stands for the generation probability of the most desirable reflection token \hat{r} (e.g., ISREL =Relevant) for the critique token type G with N^G distinct tokens (that represent

Senstive to w, a customizable feature



Ours: Self-reflective Retrieval-Augmented Generation (Self-RAG)



Experiments: Main results

Setting: Critic C: 7b-base Generater M: 7b and 13b

	Short-form		Closed-set		Long-form generations (with citations)					
	PopQA	TQA	Pub	ARC	Bio			ASQA		
LM	(acc)	(acc)	(acc)	(acc)	(FS)	(em)	(rg)	(mau)	(pre)	(rec)
LMs with proprietary data										
Llama2- c_{13B}	20.0	59.3	49.4	38.4	55.9	22.4	29.6	28.6	_	_
Ret-Llama2-c _{13B}	51.8	59.8	52.1	37.9	79.9	32.8	34.8	43.8	19.8	36.1
ChatGPT	29.3	74.3	70.1	75.3	71.8	35.3	36.2	68.8	_	_
Ret-ChatGPT	50.8	65.7	54.7	75.3	_	40.7	39.9	79.7	65.1	76.6
Perplexity.ai	_	_	_	_	71.2	_	_	_	-	-
		В	aselines	without	retrieva	l				
Llama27B	14.7	30.5	34.2	21.8	44.5	7.9	15.3	19.0	_	_
Alpaca _{7B}	23.6	54.5	49.8	45.0	45.8	18.8	29.4	61.7	_	_
$Llama2_{13B}$	14.7	38.5	29.4	29.4	53.4	7.2	12.4	16.0	_	_
Alpaca _{13B}	24.4	61.3	55.5	54.9	50.2	22.9	32.0	70.6	_	_
$CoVE_{65B}$ *	_	_	_	_	71.2	_	-	_	-	-
Baselines with retrieval										
Toolformer* _{6B}	_	48.8	_	_	_	_	_	_	_	_
Llama2 _{7B}	38.2	42.5	30.0	48.0	78.0	15.2	22.1	32.0	2.9	4.0
Alpaca _{7B}	46.7	64.1	40.2	48.0	76.6	30.9	33.3	57.9	5.5	7.2
$Llama2-FT_{7B}$	48.7	57.3	64.3	65.8	78.2	31.0	35.8	51.2	5.0	7.5
SAIL*7B	_	_	69.2	48.4	_	_	_	_	_	_
$Llama2_{13B}$	45.7	47.0	30.2	26.0	77.5	16.3	20.5	24.7	2.3	3.6
Alpaca _{13B}	46.1	66.9	51.1	57.6	77.7	34.8	36.7	56.6	2.0	3.8
Our SELF-RAG 7B	<u>5</u> 4.9	66.4	72.4	67.3	81.2	- 30.0 -	35.7	74.3	⁻ <u>66.9</u> ⁻	$6\bar{7}.\bar{8}$
Our Self-Rag 13b	55.8	69.3	74.5	73.1	80.2	31.7	37.0	71.6	70.3	71.3

Experiments: Ablations

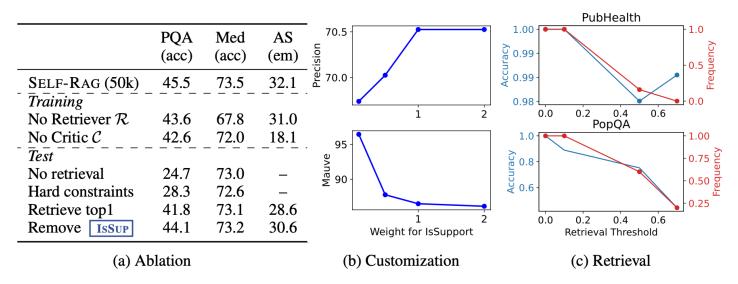


Figure 3: Analysis on SELF-RAG: (a) Ablation studies for key components of SELF-RAG training and inference based on our 7B model. (b) Effects of soft weights on ASQA citation precision and Mauve (fluency). (c) Retrieval frequency and *normalized* accuracy on PubHealth and PopQA.

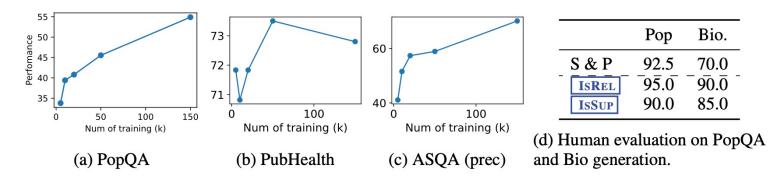


Figure 4: **Training scale and Human analysis:** (a) (b) (c) **Training scale analysis** shows the effect of the training data scale on PopQA, PubHealth and ASQA (citation precision), respectively. (d) **Human analysis** on SELF-RAG outputs as well as reflection tokens.