
Staler: State-Manitaining Language Models for 
Embodied Reasoning

Yiyu Jiang
Phd student 
University of Manchester

Takuma Yoneda*,1, Jiading Fang*,1, Peng Li *,2, Huanyu Zhang *,3, Tianchong Jiang 3, 
Shengjie Lin 1, Ben Picker 3, David Yunis 1，Hongyuan Mei 1, Matthew R. Walter 1

1TTI-Chicago, 2Fudan University, 3University of Chicago, *Equal Contribution



Introduction

Effective methods for difficult embodied reasoning tasks
– rely solely on the implicit in-context memory that is internal to the LLM
– augment LLMs with scene information extracted from an ego-centric image 

captured at the current time step

Struggle when faced with planning long time horizons tasks
• Due to limited context window of contemporary LLMs

Struggle to exploit information conveyed in long-term context
• Just improves prediction accuracy only on a small number of tokens
• The context beyond what can be directly copied

Prohibits LLMs from reasoning over aspects of the scene 
(not directly observable)
• reliance on the robot’s current ego-centric view prohibits the language model from 

reasoning over aspects of the scene that are not directly observable



Introduction

In this paper, we propose Statler (STATe-maintaining Language models for Embodied 
Reasoning), a framework that maintains an external world model as explicit memory 
to improve the long-term reasoning capabilities of LLMs for robot planning
• World Model Reader

‒ interfaces with the world model to generate code that answers user queries
• World Model Writer

‒ responsible for predicting the next world state based on the current world state and a 
query given by the reader

• Structured representation of the 
world state

• Simulated and real-world robot 
manipulation domains
‒ improves the long-term embodied 

reasoning capabilities of LLMs 
‒ outperforms the current state-of-

the-art



Motivational Example

Three-cups-and-a-ball version of 
the classic shell game

Evaluation
• 30 demonstrations swaps
• 100 episodes
• Result

‒ Vanilla LLM: highlights the difficulty of maintaining 
the world sate implicitly in LLMs

‒ LLM w/CoT: performs better, also experiences a 
pronounced decrease 

‒ LLM w/State: 
‒ Decreases far more gradually 
‒ Retaining more than 75%(absolute and relative 

accuracy after 5 rounds of swaps)



Method

• Inspired by the concept of modularity, we propose to split the burden across multiple 
different prompted LLMs
• Maintain a separate prompt that includes instructions and demonstrations for 

each subtask (state tracking or query responding) and then use the prompt to 
elicit an LLM to perform the particular subtask

• Includes
• World-model reader
• World-model writer 

• Not pose any limitation on what domain it can be applied to, or how many 
number of subtasks there are

Key: allow the LLM to describe the 
next state while responding to 
each user query



Method



Experiments

Table-top Manipulation Domains
• 20 evaluation episodes
• Each episode consists of between 5 and 16 consecutive steps of user queries



Experiments



Experiments

Code generation based on the type of textual utterance
– Aligning the set of queries evaluated by both of the models

Model is not without errors:
– Hallucinates block conditions or locations
– Model’s reasoning strategy predominantly focus on evaluating the weight 

relationships between blocks
– Struggle to Comprehend ambiguous terms like “other” in queries



Real Robot Experiments

• We use MDETR, an open-vocabulary segmentation model, to obtain segmentation 
masks for objects from an RGB camera on the gripper

• The difficulty is in recognizing that the black cup must be removed in order to move 
the yellow block, which Statler correctly spots.



Limitations

Limitation 1: Hand individually world models for each task
• Ideally there should be an automatic way of generating it, maybe from the LLMs 

themselves

Limitation 2: Current world models are still purely text-based
• It does not directly reason about visual information 
• How it will work out when multi-modal models are accessible

Limitation 3: Issues in execution the updated state will be incorrect 
• Assume that the generated code executes successfully
• This could be alleviated by providing some feedback from external modules such as 

image captioning models



Conclusion

• We presented Statler, a state-maintaining language model that consists 
of a world-model reader and a writer

• Our model does not pose any limitations in how the state representation 
should be formatted, as long as it is represented in the form of a string, 
leaving some space for flexibility in its design

• We evaluated our approach on various simulated and real tasks. The 
experimental results suggest that our approach effectively maintains state 
representation and handles non-trivial reasoning over the past steps, 
whereas the baseline approach (Code-as-Policies) fails to generate correct 
code on such queries

• having separate models suggests that it may be possible to use a 
lightweight language model for some components


