MANCHESTER
1824

The University of Manchester

Staler: State-Manitaining Language Models for
Embodied Reasoning

Takuma Yoneda™', Jiading Fang™', Peng Li 2, Huanyu Zhang "3, Tianchong Jiang 3,
Shengjie Lin ', Ben Picker 3, David Yunis ', Hongyuan Mei !, Matthew R. Walter *

"TTI-Chicago, 2Fudan University, 3University of Chicago, "Equal Contribution

Yiyu Jiang
Phd student
University of Manchester

MAIL CHFSSJER Introduction

The University of Manchester
Effective methods for difficult embodied reasoning tasks
— rely solely on the implicit in-context memory that is internal to the LLM

— augment LLMs with scene information extracted from an ego-centric image
captured at the current time step

Struggle when faced with planning long time horizons tasks
* Due to limited context window of contemporary LLMs

Struggle to exploit information conveyed in long-term context
e Just improves prediction accuracy only on a small number of tokens

* The context beyond what can be directly copied

Prohibits LLMs from reasoning over aspects of the scene
(not directly observable)

* reliance on the robot’s current ego-centric view prohibits the language model from
reasoning over aspects of the scene that are not directly observable

MAIL CH%%EER Introduction

The University of Manchester
In this paper, we propose Statler (STATe-maintaining Language models for Embodied
Reasoning), a framework that maintains an external world model as explicit memory
to improve the long-term reasoning capabilities of LLMs for robot planning

World Model Reader
interfaces with the world model to generate code that answers user queries

World Model Writer
responsible for predicting the next world state based on the current world state and a

guery given by the reader

Structured representation of the
world state

Simulated and real-world robot
manipulation domains

improves the long-term embodied
reasoning capabilities of LLMs

outperforms the current state-of-
the-art

say("The Rubik's cube is under the blue cup. I shall put away the blue cup
Filrsits")
put_first_on_second("blue cup", "empty space")

Code update_wm("Put the blue cup on the empty space.")
say("Now I can put the toy wheel on the Rubik's cube.")
put_first_on_second("toy wheel", "rubiks cube")
update_wm("Put the toy wheel on the Rubik's cube.")

User Query ﬁ @ :
Put the toy wheel on E> World Model Reader World Model Writer

the Rubik's cube.

state = {
"objects": ("rubiks cube", "toy duckie", "toy wheel", "yellow block"),
"covers": ("red cup", "green cup", "blue cup", "black cup"),
State # "rubiks cube": {"under": "blue cup"},
"toy wheel": {"on": "yellow block"},
"yellow block": {"under": "toy wheel"},
"blue cup": {"on": "rubiks cube"},}

Figure 1: Our Statler framework enables robots to carry out complex tasks specified in natural
language that require reasoning over long time horizons. Integral to our model are its world model
writer and world model reader, two instances of general LLLMs that are responsible for maintaining
the explicit world state and generating code that enables the robot to carry out the task.

MANCHESTER

1824
The University of Manchester

Three-cups-and-a-ball version of
the classic shell game

Evaluation

Motivational Example

|
2
3
4
5
6

Prompt 1: The prompt and de-
sired output of a vanilla LLM.

30 demonstrations swaps

e 100 episodes
* Result

Initial state

cups = [False, True, False]
Swapping cup 1 with cup 2
Swapping cup O with cup 2
Swapping cup 1 with cup 2
cups = [True, False, False]

— Vanilla LLM: highlights the difficulty of maintaining
the world sate implicitly in LLMs
— LLM w/CoT: performs better, also experiences a
pronounced decrease

— LLM w/State:

— Decreases far more gradually
— Retaining more than 75%(absolute and relative
accuracy after 5 rounds of swaps)

1
2
3
4
5
6
7
8

Initial state

cups = [False, True, False]
Swapping cup 1 with cup 2
Swapping cup O with cup 2
Swapping cup 1 with cup 2
cups = [False, False, True]
cups = [True, False, False]
cups = [True, False, False]

0 9N B WD —

Initial state

cups = [False, True, Falsel]
Swapping cup 1 with cup 2
cups = [False, False, True]
Swapping cup O with cup 2
cups = [True, False, False]
Swapping cup 1 with cup 2
cups = [True, False, Falsel

Prompt 2: The prompt and de- Prompt 3: The prompt and de-
sired output of an LLM w/ CoT. sired output of an LLM w/ state.

1.0 1.0
3081 F0.875
g "N g
§ 0.64 Y —e— VanillaLLM | (¢ §
< \ .~ LLMw/CoT <
510.4- S —e— LLMw/ State [0.4Z
Ra) \ >
<J0.2 1 \1 L 0.2

0.0 ‘ "

* Number of swaps

Figure 2: The accuracies of different methods for different
numbers of swaps in the three-cups-and-a-ball shell game.
LLM w/ State is a simplified version of our proposed Statler
framework. For each method, the solid line shows how its
accuracy a(n) changes with the number of swaps n. The
dashed line is the relative accuracy: r(n) = a(n)/a(1).
Intuitively, it measures how fast the performance decreases
from a hypothetically perfect one-swap performance. Note
that LLM w/ State indeed achieves a(1) = 100%.

say("The Rubik's cube is under the blue cup. I shall put away the blue cup
FrSEs™))

MANCHESTER put_first_on_second("blue cup", "empty space")
1824 Method Code update_wm("Put the blue cup on the empty space.")

The University of Manchester

say("Now I can put the toy wheel on the Rubik's cube.")
put_first_on_second("toy wheel", "rubiks cube")
update_wm("Put the toy wheel on the Rubik's cube.")

User Query G
Put the toy wheel on I:> World Model Reader World Model Writer

the Rubik's cube.

state = {
"objects": ("rubiks cube", "toy duckie", "toy wheel", "yellow block"),

Key: allow the LLM to describe the ;
. . # "ccv?rs": ("Eed qu"’ ::grﬁen cup",”"blue cup", "black cup"),
next state while responding to R o e N
h user query : "yellow block": {"under": "toy wheel"},
eac

"blue cup": {"on": "rubiks cube"},}

Figure 1: Our Statler framework enables robots to carry out complex tasks specified in natural
language that require reasoning over long time horizons. Integral to our model are its world model
writer and world model reader, two instances of general LLMs that are responsible for maintaining
the explicit world state and generating code that enables the robot to carry out the task.

* Inspired by the concept of modularity, we propose to split the burden across multiple
different prompted LLMs

* Maintain a separate prompt that includes instructions and demonstrations for
each subtask (state tracking or query responding) and then use the prompt to
elicit an LLM to perform the particular subtask

* Includes
e World-model reader
e World-model writer

* Not pose any limitation on what domain it can be applied to, or how many
number of subtasks there are

MANCHESTER Met h o d

1824

The University of Manchester

I # state = {

2 # "objects": ["cyan block", "yellow block", "brown block", "purple block", "blue block", "green
bowl", "red bowl", "disinfector"],

3 # "relations": [],

4 # "disinfector": {"contains": []},

5 # "cyan block": {"is": ["dirty"]l},

6 # "yellow block": {"is": ["clean"l},

7 # "brown block": {"is": ["clean"l},

8 # "purple block": {"is": ["dirty"l},

9 # "blue block": {"is": ["clean"]},

10 # "green bowl": {},

11 # "red bowl": {}

12 # %}

13 # query: Put the cyan block on the yellow block
14 put_first_on_second("cyan block", "yellow block")
15 update_wm("Put the cyan block on the yellow block")

Prompt 4: world-model reader. The text highlighted in green represents the part that the model is
expected to generate.

1 # state = {

2 # "objects": ["cyan block", "yellow block", "brown block", "purple block", "blue block", "green
bowl", "red bowl", "disinfector"],
"relations": [],
"disinfector": {"contains": []},

"cyan block": {"is": ["dirty"l},
"yellow block": {"is": ["clean"l},
"brown block": {"is": ["clean"]},
"purple block": {"is": ["dirty"l},
"blue block": {"is": ["clean"]},
"green bowl": {},

"red bowl": {}

12 T
13 query: Put the cyan block on the yellow block.
14 # state = {

"objects": ["cyan block", "yellow block", "brown block", "purple block", "blue block", "green
owl", "red bowl", "disinfector"],

16 "relations": [["cyan block is on yellow block"l],
17 "disinfector": {"contains": []1},

18 "cyan block": {"is": ["dirty"l},

19 "yellow block": {"is": ["dirty"]},

20 "brown block": {"is": ["clean"]},

21 "purple block": {"is": ["dirty"l},

22 "blue block": {"is": ["clean"]},

23 "green bowl": {},

24 "red bowl": {},

I
HOH HHHHHEHHHOH BB

25 ¥

Prompt 5: world-model writer. The text rendered in blue highlights the updated part of the state.

WA EEEN Experiments

The University of Manchester

Table-top Manipulation Domains
e 20 evaluation episodes
* Each episode consists of between 5 and 16 consecutive steps of user queries

(a) Pick-and-place (b) Disinfection (c) Weight reasoning

Figure 4: The simulated domains we consider include (a) pick-and-place; (b) block disinfection,
where the translucent sphere around a block represents its dirtiness (this is not visible to the robot);
and (c) relative weight reasoning, where the radius of the disk under each block provides an indication
of its weight. These disks are rendered there only for visual aids.

MANCHESIER Experiments

The University of Manchester

Table 1: Number of successful steps until failure (normalized by episode length) and the success rate
for each domain.

Simple Pick-and-Place Block Disinfection Rel. Weight Reasoning

successful success successful success successful success
SthS rate steps rate SthS rate
Code-as-Policies 0.54 0.00 (0/20) 0.68 0.00 (0/20) 0.84 0.00 (0/20)
Statler (ours) 0.88 0.50 (10/20) 0.82 0.40 (8/20) 0.93 0.55 (11/20)
Q))) What is the color of the block right above the blue block? j Q))) How many blocks are not in the bowls? J
Code-as-Policies: fails to generate Code-as-Policies: “There are two blocks
anvihih ' ' & not in the bowls: brown block and yellow
yHing block”
[1%
C Statler (ours): “red” (’ Statler (ours): “three blocks”

Figure 5: Examples that show the result of querying language models with and without state
maintenance for the environment depicted in the image. In the scenario depicted on the left, a
standard language model fails to produce an answer, while our state-maintaining language model

produces the correct response. On the right, one of the blocks is currently not visible and so a standard

language model (Code-as-Policies) incorrectly identifies two blocks as not being in the bowls. By
maintaining a persistent model of the world, our method is aware of the third block and correctly
answers the query.

MANCHESIER Experiments

The University of Manchester

Code generation based on the type of textual utterance
— Aligning the set of queries evaluated by both of the models

Table 2: Success rates of Code-as-Policies and Statler for non-temporal and temporal queries,
truncating at the first failure of each model.

Non-temporal Temporal

Code-as-Policies Statler (ours) Code-as-Policies Statler (ours)

Simple Pick-and-Place ~ 1.00 (62/62) 1.00 (68/68) 0.31 (9/29) 0.83 (48/58)
Block Disinfection 0.99 (148/149) 0.98 (164/168) 0.05 (1/20) 0.65 (15/23)
Weight Reasoning 1.00 (107/107) 1.00 (107/107) 0.00 (0/20) 0.55 (11/20)

Model is not without errors:
— Hallucinates block conditions or locations

— Model’s reasoning strategy predominantly focus on evaluating the weight
relationships between blocks

— Struggle to Comprehend ambiguous terms like “other” in queries

WAL IEN Real Robot Experiments

The University of Manchester

 We use MDETR, an open-vocabulary segmentation model, to obtain segmentation
masks for objects from an RGB camera on the gripper

* The difficulty is in recognizing that the black cup must be removed in order to move
the yellow block, which Statler correctly spots.

Code-as-Policies

Statler (ours)

Figure 6: A comparison of the resulting behavior for (top) Code-as-Policies and (bottom) our Statler
model for the real robot experiments given the multi-sentence instruction “Put the black cup on the
yellow block. Put the yellow block on the Rubik’s cube.” Frames are arranged with time increasing
from left to right, and correspond to instances when the robot has placed a (possibly imaginary)
object. In order to successfully carry out the instruction, the robot must remove the black cup after
placing it above the yellow block in order to place the block on the Rubik’s cube. However, the the
baseline Code-as-Policies (top row, third frame) fails to move the black cup aside, leaving the yellow
block covered, and instead places an imaginary object on top of the Rubik’s cube.

MAIL CHFSSJER Limitations

Limitation 1: Hand individually world models for each task

* |deally there should be an automatic way of generating it, maybe from the LLMs
themselves

Limitation 2: Current world models are still purely text-based
* |t does not directly reason about visual information
* How it will work out when multi-modal models are accessible

Limitation 3: Issues in execution the updated state will be incorrect
* Assume that the generated code executes successfully

e This could be alleviated by providing some feedback from external modules such as
image captioning models

MAIL CH%%EER Conclusion

» We presented Statler, a state-maintaining language model that consists
of a world-model reader and a writer

* Our model does not pose any limitations in how the state representation

should be formatted, as long as it is represented in the form of a string,
leaving some space for flexibility in its design

 We evaluated our approach on various simulated and real tasks. The
experimental results suggest that our approach effectively maintains state
representation and handles non-trivial reasoning over the past steps,

whereas the baseline approach (Code-as-Policies) fails to generate correct
code on such queries

* having separate models suggests that it may be possible to use a
lightweight language model for some components

