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Backgrounds

* Large, high-capacity models trained on diverse datasets have shown remarkable successes on
efficiently tackling downstream applications.

* |In the domain of robotics, there is no pretrained models with general pretrained backbones
serving as a starting point for downstream applications like those in NLP and CV.

* To achieve a general-purpose model in robotics, we need a large and diverse robotics dataset
covering different environments, objects and tasks. However, the existing largest robotics
dataset lacks in size and diversity compared with those in CV and NLP.

* Combination of data from different robots and environments provides a better coverage of
variations in environments and robots. Training over the cross-embodiment robotics data

could be the solution to a general-purpose robotics model.



Contributions

1. Demonstration for the advantages of cross-embodiment training under a unified input and
output scheme, which enables efficient policy transfer.

2. Open source of the Open X-Embodiment (OXE) Repository, which includes a dataset with 22
different robotic embodiments from 21 different institutions.



Data Format Consolidation

Model inputs: a history of recent images and language instructions.

Model outputs: a normalized 7-dimensional action vector controlling the end-effector(x, y, z, roll,
pitch, yaw, and gripper opening or the rates of these quantities).

Images from different datasets are resized to the same resolution. For those with multiple views,
choose the canonical one as inputs.

Actions from different datasets are converted into the normalized 7-DoF end-effector action for
discretization. The coordinate frames of actions across datasets are not aligned, and the action
values could represent either absolute or relative positions or velocities as the original control
scheme of the dataset.



The Open X-Embodiment Repository
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Fig. 2: The Open X-Embodiment Dataset. (a): the dataset consists of 60 individual datasets across 22 embodiments. (b): the Franka robot
has the largest diversity in visually distinct scenes due to the large number of Franka datasets, (¢): xArm and Google Robot contribute
the most number of trajectories due to a few large datasets, (d, e): the dataset contains a great diversity of skills and common objects.



RT-X Design

The training detalls and architectures of RT-1-X and RT-2-X are similar to those of
the original RT-1 and RT-2, while the major differences lie in the cross-embodiment

dataset.
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Fig. 3: RT-1-X and RT-2-X both take images and a text instruction as input and output discretized end-effector actions. RT-1-X is an
architecture designed for robotics, with a FILM [116] conditioned EfficientNet [117] and a Transformer [118]. RT-2-X builds on a VLM
backbone by representing actions as another language, and training action text tokens together with vision-language data.



In-Distribution Evaluation

Evaluation results on domains with small-scale datasets
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Fig. 4: RT-1-X mean success rate is 50% higher than that of either the Original Method or RT-1. RT-1 and RT-1-X have the same network
architecture. Therefore the performance increase can be attributed to co-training on the robotics data mixture. The lab logos indicate the
physical location of real robot evaluation, and the robot pictures indicate the embodiment used for the evaluation.
Original method the baseline model from the corresponding paper of the dataset
RT-1 an RT-1 model trained on the specific dataset

RT-1-X an RT-1 model trained on the cross-embodiment dataset



In-Distribution Evaluation

Evaluation results on domains with large-scale datasets

Evaluation Setting Bridge Bridge RT-1 paper 6 skills

Evaluation Location IRIS (Stanford) RAIL Lab (UCB) Google Robotic Lab

Robot Embodiment WidowX WidowX Google Robot i A
Original Method LCBC [95] LCBC [95] - CrOSS_ em bOd | ment tra Ini ng

Original Method 13% 13% : iImproves performance in the
RT-1 40% 30% 92 % . .

RT-1-X 27% 27% 73% domains with large-scale
RT-2-X (55B) 50% 30% 91%

datasets, only when utilizing a
TABLE I: Parameter count scaling experiment to assess the impact : -
of capacity on absorbing large-scale diverse embodiment data. For proper hlgh 'CapaCIty
these large-scale datasets (Bridge and RT-1 paper data), RT-1-X architecture.
underfits and performs worse than the Original Method and RT-1.
RT-2-X model with significantly many more parameters can obtain
strong performance in these two evaluation scenarios.



Out-of-Distribution Evaluation

Emergent skills evaluation: evaluate the model on one embodiment(the Google Robot
dataset, Google Robot) while the skills come from another dataset(the Bridge dataset)
with a different embodiment(Widow X).

Row Model Size History Length Dataset Co-Trained w/ Web Initial Checkpoint Emergent Skills Evaluation RT-2 Generalization Evaluation
(1) RT-2 55B none Google Robot action Yes Web-pretrained 27.3% 62 %
(2) RT-2-X 55B none Robotics data Yes Web-pretrained 75.8% 61%
(3) RT-2-X 55B none Robotics data except Bridge Yes Web-pretrained 42.8% 54%
(4) RT-2-X 5B 2 Robotics data Yes Web-pretrained 44.4% 52%
(5) RT-2-X 5B none Robotics data Yes Web-pretrained 14.5% 30%
(6) RT-2-X 5B 2 Robotics data No From scratch 0% 1%
(7) RT-2-X 5B 2 Robotics data No Web-pretrained 48.7% 47%

TABLE II: Ablations to show the impact of design decisions on generalization (to unseen objects, backgrounds, and environments) and
emergent skills (skills from other datasets on the Google Robot), showing the importance of Web-pretraining, model size, and history.

(1) & (2): cross-embodiment training improves the range of tasks even in domains with large
amount of data.

(2) & (3): source of new skills (the Bridge dataset) is crucial in such transfer behavior.
(2) & (5): architecture capacity matters.
(4) & (5): the history could improve generalization performance.



Limitations

1. No generalization experiments over a new embodiment.

2. Embodiment control conditioned on single image and language instructions, without the rich
data from different sensing and actuation modalities that could be possibly helpful.

3. No criterion for whether positive transfer happens.
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* Assumption: necessary abilities to finish a vision-language
conditioned robotic manipulation task

1. Entity of interest extraction and vision-language put orange into the pot /
alignment, including the embodiment, the object to move orange near pot

Interact with, obstacles, and the background. I—. | ;'i '| — ‘
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2. Recognition of spatial relationships among entities, N |
iIncluding the knowledge of the relative positions and |

P | el

orientations of the robot's embodiment(the end effector),
objects and obstacles put banana on top of the pan /
! ' move banana pan
3. Plan of the next possible move: Based on the - - - g
iInformation above, the robot needs to be able to plan I \.! (‘
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Discussion

How does the transfer happen?

Differences between the embodiments no
longer matter, as the action spaces have been
unified. The core task of the model is guiding
the end effector to the right position with the
correct orientation. However, the necessary
abilities to complete the task are essentially
embodiment-agnostic.

All the involved embodiments can be seen
as combinations of an end effector and a base.
The unified 7-DoF end effector action space
liberates the model from trivial low-level joint
control, enabling it to transfer among
embodiments and learn from other datasets.

i
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Discussion

* Utilization of information from other modalities
* Depth, joint state, kinematic information from urdfs, image instruction,
etc.

* Few/Zero-shot transfer to new embodiment
* Differences in action space and camera poses
* New challenging embodiment which do not follow the assumption.

* Learn from diverse human video datasets
* How to learn from unlabeled human data?
* Suppose the assumption is correct, how to design an effective self-
supervised training scheme?



