MANCHESTER
1824

The University of Manchester

Self-Refined Large Language Model as Automated
Reward Function Designer for Deep Reinforcement
Learning in Robotics

Yang Li

PhD student

University of Manchester
yang.li-4@Manchester.ac.uk

Introduction

The University of Manchester

* The paper proposes a novel LLM framework with a self-refinement mechanism for
automated reward function design.

* Current Reward Function Design:
— Meticulous Manual Crafting reward design

— AutoRL [1]: automate the hyperparameters and reward function tuning
» predefined, parameterized reward function and subsequently fine-tune its parameters to identify an optimal reward

function like using evolutionary algorithms [2]
* due to its dependency on an initially hand-crafted parameterized reward function, AutoRL lacks the ability to

formulate a reward function entirely from scratch

Current methods rely on domain-specific expertise !!!

[1] Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, et al. 2022.

Automated reinforcement learning (autorl): A survey and open problems. Journal of Artificial Intelligence Research 74 (2022), 517-568.
[2] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized evolution for image classifier architecture search. In AAAI Conference on Artificial Intelligence,

Vol. 33. 4780-4789.

Yang Li (yang.li-4@manchester.ac.uk) Introduction

[\

Introduction

The University of Manchester

* The common-sense knowledge of LLM offers the potential to alleviate the human
effort required in formulating reward functions

* Current Reward Function Design with LLM:
— For simpler tasks, such as normal-form games, LLM could serve directly as a proxy reward function [1].

— Through processing natural language instructions, LLM seamlessly integrates task requirements and user preferences into
reward functions [2].

LLM is able to independently design a reward function from scratch for continuous robotic control tasks?

[1] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. 2023. Reward design with language models. arXiv preprint arXiv:2303.00001 (2023).
[2] Hengyuan Hu and Dorsa Sadigh. 2023. Language instructed reinforcement learning for human-ai coordination. arXiv preprint arXiv:2304.07297 (2023).

Yang Li (yang.li-4@manchester.ac.uk) Introduction

The University of Manchester

Natural Language Input

'l want to design a reward function for a deep reinforcement !
!learning task.
[}

I [Environment description]
'l have a quadruped robot. g
1 Design
| [Task description]

1 This task has the following goals:

I'1. The quadruped robot should run forward straightly as fast
Ias possible.

2. The quadruped robot cannot fall over.

[}

Reward Function

V

I [Observable states]

I The following states are available for the reward function

1. The Cartesian position of the quadruped robot.
'2. The rotation of the quadruped robot.
: 3. The linear velocity of the quadruped robot.

1. Training Process
2. Objective Metrics

Jaz= 3. Success Rate
: [Rules] 4. Overall Assessment

Following rules should be satisfied when designing the
€ d function
eward function should only use the giv

'good’

available

Method

Self-

Loop

Final Reward
Function

1
1
]
1
1
1
1
1
1
1
1
1 '
! design. : Evaluation Results
]
]
1
1
1
]
1
1
1
1
1
1

|

‘bad’

Feedback Prompt
| [Feedback History]
I e

1
! [Overall Assessment]

LLM
Initial 5 .
Refinement . The performance of the designed reward function is bad.

: [Training Process]

, The training reward converges after [NUM] steps.
; The average timestep for one episode is [NUM].

1 The average reward is [NUM] for one episode.

1
1
1
1
1
1
1
1
1
1
1
1 1
1 [Objective Metrics] 1
1 The robot's average linear velocity on the x-axis is [NUM]. 1
1 The robot's average linear velocity on the y-axis is [NUM]. 1
1 The robot's average linear velocity on the z-axis is [NUM]. 1
I The robot's average angular velocity on the x-axis is [NUM]. !
I The robot's average angular velocity on the y-axis is [NUM]. !
I The robot's average angular velocity on the z-axis is [NUM]. !
1

1

1

1

1

1

1

1

1

[Success Rate]

The su

Figure 1: Our proposed self-refine LLM framework for reward function design. It consists of three
steps: initial design, evaluation, and self-refinement loop. A quadruped robot forward running task
is used as an example here. A complete list of the prompts used in this work can be found in the

appendix.

Yang Li (yang.li-4@manchester.ac.uk)

Method

The framework consists of three steps:

1) Initial design, where the LLM accepts a natural
language instruction and devises an initial reward
function;

2) Evaluation, where the system behavior resulting from
the training process using the designed reward
function is assessed;

3) Self-refinement loop, where the evaluation feedback
is provided to the LLM, guiding it to iteratively refine
the reward function.

Method

The University of Manchester

Contributions:

Natural Language Input ~_ Feedback Prompt

—————————————————————————

'l want to design a reward function for a deep reinforcement !) ' [Feedback History]
!learning task. e
[}

1. We explore the ability of LLM to design reward

I [Environment description]
'l have a quadruped robot.
|

| [Task description]

1 This task has the following goals:

I'1. The quadruped robot should run forward straightly as fast
Ias possible.

2. The quadruped robot cannot fall over.

[}

LLM “ i
i35 elf- i ! . . .
D'gg;g'nl l Refinoment SRS ARSI functions for DRL controllers. Diverging from
Loop _ ..]
[Training Process] ! . .
Rewa Ut el v cnvores ot (WM aors. | many studies that leverage few-shot in-context

¢ 1 The average reward is [NUM] for one episode. 1

: ‘ learning when prompting the LLM, we employ the
I[Observaple hitogi) i i : / A 1 The robot's average linear velocity on the x-axis is : ‘ . .
i s e e e L (e otation Results The robots avrage Inrvloatyon e .o s VUM | LLM as a zero-shot reward function designer.

: [Objective Metrics]

1. The Cartesian position of the quadruped robot. 1. Training Process bad' 1 The robot's average linear velocity on the z-axis is [NUM]. 1

e e e e 2. Objective Metrics [Tne fobots average angla veloay o th -axs i (WU 2. We incorporate a self-refinement mechanism into
:4‘ 3. Success Rate I'The robot's average angular velocity on the z-axis is [NUM]. J‘ . . .
4. Overall Assessment !
: " S | N the reward function design process to enhance its
goo ‘ e outcomes.
Final Reward “ eqe

[Function] o th oward uncion based onth v fosdback 3. We highlight the effectiveness and applicability of
Figure 1: Our proposed self-refine LLM framework for reward function design. It consists of three our pI'OpOSCd approach through a Variety of
steps: initial design, evaluation, and self-refinement loop. A quadruped robot forward running task ti boti trol task di
is used as an example here. A complete list of the prompts used in this work can be found in the conlinuous ropotic control tasks across aiverse
appendin. robotic systems.

Yang Li (yang.li-4@manchester.ac.uk) Method

Method — Initial Design

The University of Manchester

Natural Language Input They segment the natural language prompt into four parts:

I'l want to design a reward function for a deep reinforcement !

I'learning task.
i

I [Environment description]

I'l have a quadruped robot.
i

I [Task description]

I This task has the following goals:

I1. The quadruped robot should run forward straightly as fast
I as possible.

I'2. The quadruped robot cannot fall over.

i

* Environment description: we first describe the robotic system we
are working with, e.g., a quadruped robot or a 7-DOF manipulator,
and provide details regarding the environmental setup;

* Task description: we then outline the control objectives of the task,
along with any existing specific task requirements;

L e e . * Observable states: we also provide a list of the observable states that
The following states are available for the reward function .) .
| design. are available for the reward function design;

1'1. The Cartesian position of the quadruped robot.
''2. The rotation of the quadruped robot.
3. The linear velocity of the quadruped robot.

* Rules: finally, we explain the rules that the LLM should follow when
designing the reward function. Specifically, we emphasize two rules:
first, the reward function should be based solely on the observable
states; second, the reward function should exclude elements that
are challenging to quantify, such as specific target postures of the
quadruped robot.

i R

Yang Li (yang.li-4@manchester.ac.uk) Method

6

MANCHESTER

2a Method — Initial Design

The University of Manchester

Ball Catchi
Prompt example:

I want to design a reward function for a reinforcement learning task.

I have a 7 DOF manipulator with a gripper attached as the end effector. The manipulator
initially holds a container that opens upwards, and a ball will be thrown from above.

This task has the following goals:
1. The manipulator should use the container to capture the ball before it falls on the ground.
2. When the ball has been captured, it should stay within the container as long as possible.

The following variables are available for reward function design.

1. ball_pos: This vector with a dimension of 3 represents the X,y,z position of the ball
according to the world coordinate.

2. ball_vel: This vector contains the linear velocity of the ball according to the world
coordinate.

3. container_pos: This vector represents the X,y,z position of the container according to the
world coordinate.

4. container_rot: This 4-dimensional vector represents the rotation of the container in
quaternion.

Some rules while designing the reward function:

1) The reward function should only use the given variables.

2) The reward function should not use unknown quantities, such as desired joint positions, in
its computation.

Design a complete reward function for this task.

Yang Li (yang.li-4@manchester.ac.uk) Method

Method - Evaluation

The University of Manchester

Aiming to minimize human intervention, the evaluation is structured as an automated procedure.

Self
Imtlal
Desian Refinement
9 Loop

Reward Function

V

Evaluation Results

1. Training Process ‘bad’
2. Objective Metrics

3. Success Rate

4. Overall Assessment

Training process: this summary includes information on whether the reward has converged, the average
reward per training episode, and the average number of timesteps in each episode.

Objective metrics: we then represent the overarching performance metric G(T) with multiple individual
task-specific objective metrics gk(T), k =1, .. ., ng. Each objective metric gk(T) addresses an aspect of
the task requirements.

» For instance, in the quadruped robots straight-forward walking task, two objective metrics could be
employed: one assessing the forward distance the robot travels without toppling and another
quantifying any unintended lateral movements. We then compute the average values of these objective
metrics gk(T) over all sampled trajectories.

Success rate in task accomplishments: in addition to the task-specific objective metrics, we also introduce
the success rate SR of the trained policy in accomplishing the designated control task as a general and task-
agnostic criterion. For each control task, we define a success condition using Signal Temporal Logic (STL)
to capture the core objective of the task.

» For example, the success condition for a quadruped robot walking task could be that the forward
distance travelled without falling should exceed a predetermined threshold. A trajectory meeting the
success condition is considered a success. The success rate SR is determined across all sampled
trajectories.

Yang Li (yang.li-4@manchester.ac.uk) Method

MANCHESTER

1824

The University of Manchester

Design

Reward Function

v

Evaluation Results
1. Training Process

2. Objective Metrics

3. Success Rate

4. Overall Assessment

LLM

o Self-

Initial . !

Refll‘lementI The performance of the designed reward function is bad.
Loop

bad’

Method — Self-Refinement Loop

Feedback Prompt
| [Feedback History]
I e

1
! [Overall Assessment]

: [Training Process]

, The training reward converges after [NUM] steps.
1 The average timestep for one episode is [NUM].

1 The average reward is [NUM] for one episode.

[
1 [Objective Metrics]
I The robot's average linear velocity on the y-axis is [NUM)].

I The robot's average linear velocity on the z-axis is [NUM].
)l The robot's average angular velocity on the x-axis is [NUM].

i'good’

Final Reward
Function

S

I The robot's average angular velocity on the y-axis is [NUM)].
I The robot's average angular velocity on the z-axis is [NUM].
[

1 [Success Rate]
The success condition is: the robot should running with a
velocity greater than [NUM)] without falling.

1
1

1

1

1

1

1

1

1

1

1

1

1

1 The robot's average linear velocity on the x-axis is [NUM]. 1
1

1

1

1

1

1

1

1

1

1

1

The success rate for achieving the goal is [NUM]. I
1

1

Yang Li (yang.li-4@manchester.ac.uk)

Training process

= intrinsically task-dependent

Objective metrics

overall performance of the designed reward
function R as either ‘good’ or ‘bad’

Success rate

Method

Method — Self-Refinement Loop

The University of Manchester

Prompt example:

Ball Catching

The performance of the RL agent trained with the designed reward function is [goodl|bad].

The training reward converges after [NUM] steps.
The average timestep for one episode is [NUM].
The average reward is [NUM] for one episode.

The average normalized action value is [NUM]

The normalized distance between the ball and the container is [NUM |

The average distance between the ball and the container on the x-axis is [NUM]
The average distance between the ball and the container on the y-axis is [NUM]
The average distance between the ball and the container on the z-axis is [NUM]
The ball’s average linear velocity on the x-axis 1s [NUM]

The ball’s average linear velocity on the y-axis is [NUM]

The ball’s average linear velocity on the z-axis is [NUM]

Evaluation results of [NUM] trials are given below:
Goal 1 success rate i1s [NUM]

Redesign the reward function based on the given feedback.

Yang Li (yang.li-4@manchester.ac.uk) Method

Experimental Results

The University of Manchester

 Robotic manipulator (Franka Emika PandalEmikc (2023)):
1. Ball catching: the manipulator needs to catch a ball that is thrown to it using a tool
(Fig.2d);
2. Ball balancing: the manipulator should keep a ball, which falls from above, centered
on a tray held by its end-effector (Fig.2B);

3. Ball pushing: the manipulator is required to push a ball towards a target hole on a table
(Fig.2¢);
» Quadruped robot (Anymal AnyRobotics (2023)):

4. Velocity tracking: the robot needs to walk at a specified velocity without toppling over
(Fig.2d);

5. Running: the robot should run straight forward as fast as possible without falling;

6. Walking to target: the robot has to walk to a predetermined position;

* Quadcopter (Crazyflie BitCrazé (2023)):

7. Hovering: the quadcopter should fly to and hover at a designated position (Fig.[2¢);

8. Flying through a wind field: the quadcopter needs to reach a target while flying through
a wind field;

9. Velocity tracking: the quadcopter should maintain a specified velocity during flight;

Yang Li (yang.li-4@manchester.ac.uk) Experiments

[>=

(a) Ball Catching

(d) Velocity Tracking

“

(b) Ball Balancing

(c) Ball Pushing

i
L2 ™

\ 1

(e) Hovering

Figure 2: Continuous robotic control tasks with three diverse robotic systems: robotic manipulator
(Franka Emika Panda[Emika (2023)), quadruped robot (Anymal[AnyRobotic$ (2023)) and quadcopter
(Crazyflie BitCrazé (2023)). Simulations are conducted in NVIDIA Isaac Sim NVIDIA 2021).

11

s Experimental Results

The University of Manchester

Iteration 0 (Initial) | Iteration 1 (Iteration 2 (final)
Reward Function: Reward Function:
Reward Function: R =2 %7y, + Thal + Tyz + Trot + Taction R =2 %7y, + Thal + Tyz + Trot + Taction
R =7y, + Tpa + 7y + Trot 1, p.>0.5, 1, p.>0.5,
Ty, = UgyThal = . Ty, = UgyThal = .
ry = . P — {1, p, > 0.5, b ’ 0, otherwise, 5 ’ 0, otherwise,
" “ 0, otherwise, Pyz =1 — |vy| — 02|, Prot = 1 — |Oyaw| ryz =1 — 2% (|oy| + [v2]); Prot = 1 — |Oyaw]
ry =1~ |vy|,Prot = 1 — |Oyay] o =1 — i lail . 1 T i lail . 1
action — n 2.36 action — n 274
Evaluation: Evaluation: Evaluation:
SR = 10%, g,, = 2.52, g,, = —0.11, SR = 90%, g,, = 3.23,g,, = —0.12, SR = 98%, g,, = 3.76,g,, = —0.11,
Gv, = _0-23, 9p. = 0-61a Gaction = 2-36a v, = _0-227 9p. = 0-59, Gaction = 2-74, v, = _0-21’ 9p. = 0-6’gaction == 2~67’
9h .= —0.07, gépnch = —O.Ol,géyaw = —0.01 9p ., = _0'1’gépuch = —0.02,9(;,yaw = —0.01 9p ., = —O.M,gépm = —0.01,gé,yaw = 0.01
Weight/Parameter Adjustment Reward Component Adjustment

Figure 3: Reward functions in different self-refinement iterations for the quadruped robot forward
running task.

Yang Li (yang.li-4@manchester.ac.uk) Experiments

e n = xperimental Results — Reward by ChatGPT

The University of Manchester

Yang feeds the prompt in the Appendix to ChatGPT (the default GPT model)

Rtotal = aR forward + ﬂRupr'igllt + 'YRdeviu,t-ion + 5Rangu1ar +

€ Rcon trol

1. Forward Progress: The robot should be rewarded for running
forward along the x-axis as fast as possible. The forward velocity on
the x-axis can be used to compute this reward.

Rjorward = T0obot_linvel.x
This reward will encourage the robot to move forward along the x-
axis.

2. Stay Upright: We want the robot not to fall, which is represented by

its position in the z-axis.

0 ifrobot_pos.z < 0.5
1 otherwise

This reward will give a positive value if the robot's z-position is above

0.5 (i.e., not fallen), otherwise no reward.

3. Minimize Y Deviation: The robot should be penalized for large deviations along the y-axis.

Rdeviutimz - —|robot_pos.y|
This reward will penalize the robot for straying from the y=0 position, i.e., going off the

straight line path.

. Minimize Angular Velocity: Large angular velocities can indicate instability. To keep the

robot stable and running in a straight line, we can penalize large angular velocities.
Ru.ngular = _| |7'Ob0t—angvel| |2
This will penalize the robot for high angular velocities which could be indicative of unstable

behavior.

. Control Effort: To encourage energy-efficient policies, the robot can be penalized for using

high joint actions. This encourages smoother motions without unnecessary jerky actions.
Rcontrol = = | |actz'ons| |2
This will provide a penalty proportional to the magnitude of the actions vector, discouraging

excessive use of joints.

13

Experimental Results

The University of Manchester

Iteration 0
(Initial)

Iteration 1

Iteration 2
(final)

Manual

Figure 4: System behaviors corresponding to reward functions in different self-refinement iterations,
as well as the manually designed reward function. The time interval between each displayed point is
set to 1s.

14

Experimental Results

The University of Manchester

Table 1: Success rates of different reward functions and the number of self-refinement iterations (Iter.)
used for Rrefined-

Success Rate SR
Robotic System Task Rinitial RRefined FRManual | lter.

Ball Catching 100% 100% 100% 0

Manipulator Ball Balancing 100% 100% 98% 0
Ball Pushing 0% 93% 95% 5

Velocity Tracking 0% 96% 92% 3

Quadruped Running 10% 98% 95% 2
P Walking to Target 0% 85% 80% 5
Hovering 0% 98% 92% 2

Quadcopter Wind Field 0% 100% 100% 4
Velocity Tracking 0% 99% 91% 3

Yang Li (yang.li-4@manchester.ac.uk) Experiments

Conclusion

The University of Manchester

[Success Rate]

The success condition is: the robot should running with a
velocity greater than [NUM] without falling.

The success rate for achieving the goal is [NUM].

i'good’

Final Reward
Function

Feedback Prompt
o e e e e s e 1
| [Feedback History] !
I(_ . 1
1
| nitial Self- ' [Overall Assessment] |
De5|gn Reflnement' The performance of the designed reward function is bad. :
Loop .
[Training Process] |
- The training reward converges after [NUM] steps. !
Reward Function The average timestep for one episode is [NUM]. i
] The average reward is [NUM] for one episode. 1
I |
i 1 [Objective Metrics] 1
N\ 1 The robot's average linear velocity on the x-axis is [NUM]. i
i I The robot's average linear velocity on the y-axis is [NUM]. |
valuation Results
_— 'bad' I The robot's average linear velocity on the z-axis is [NUM]. 1
1. Trammg Proce§s) I The robot's average angular velocity on the x-axis is [NUM]. |
2. Objective Metrics I The robot's average angular velocity on the y-axis is [NUM)]. !
' The robot's average angular velocity on the z-axis is [NUM]. !
3. Success Rate |
4. Overall Assessment :]
1
!
1
|
|
|
1

Re-design the reward function based on the given feedback

B e e e o e e e Ee e e e e e e e e e e Ee e e e ome owd

Yang Li (yang.li-4@manchester.ac.uk) Conclusion

A

self-refined LILM framework as an

automated reward function designer for
DRL in continuous robotic control tasks.

Evaluate the proposed framework across nine
diverse robotic control tasks, distributed
among three distinct robotic systems.

Limitations:

1.

Coarse Reward Design: inability to address
nuanced aspects of desired system behaviours
that are difficult to quantify through the
automated evaluation process, such as the gait of
a quadruped robot

Rely on pre-trained common-sense

knowledge: For tasks that are highly specialized
or not represented in its training data, the LLM
may struggle to devise an appropriate reward
function

16

