MindAgent: Emergent Gaming Interaction

Ran Gong'™*, Qiuyuan Huang?**, Xiaojian Ma'*, Hoi Vo3, Zane Durante*, Yusuke Noda?,

Zilong Zheng®, Song-Chun Zhu'°%", Demetri Terzopoulos', Li Fei-Fei*, Jianfeng Gao?
LUCLA; 2Microsoft Research, Redmond; 3Xbox Team, Microsoft; *Stanford;? BIGAI; °PKU; “"THU



vVerview

New Gaming & Benchmark Creation |« -

% Cuisin World(gﬁ

Multi-Agent
(offline)

Physical
World

Human Player
and Multi-NPCs
(online)

VR/AR

Embodied
Gaming
(online)

Mixed Reality

Research Product

Existing Gaming Scenario Testing

ey |

“'4_/', CuisineWorld

")

W A 2 I B e -

\

Impact Impact
I'| Infrastructure |1
|

In-context

: LLM
learning

Optimization Gaming

Driven _

Copilot

g Emergent
Paradi o

i Ability
MindAgent

Human- Task-

Machine Planning

Interaction J

Collaboration ‘ Prompt ‘

Efficiency

: GPT-X
Trajectory
Dialogue
Feedback ‘

Minecraft

Emergent Ability of Gaming Interaction




Main Contribution

* A new gaming scenario and related benchmark based on a multi-agent
virtual kitchen environment, CuisineWorld.

* Introduce MindAgent, which demonstrates the in-context learning multi-
agent planning capacity of LLMs and brings several prompting technigues
that help facilitate their planning abillity.

* Conduct extensive evaluations with multiple LLMs and prompting settings on
the benchmark.

* Deploy the system into real-world gaming scenarios and demonstrate Its
capabilities iIn human-Al interactions. (using VR)



CuisineWorld

* Multi-agent text game.

Type Arguments Description
agent Move agent to
goto location location
agen.t agent obtain item
get location .
. from location
(1tem)
ut agent agent put everything
P location 1itholdsto location
activate agen.t agent Iturn on
location location
noop agent not dispatching agent

Table 2: Action space in CUISINEWORLD.

Benchmark Multi-task Object Tool Maximum Collabo- Human Procedural

Interaction Use Agents  ration in-the-loop Level Generation
ALFWorld (Shridhar et al., 2020) v v v 1 X X X
WAH (Puig et al., 2020) v v X 2 v v X
TextWorld (Coté et al., 2019) v v v 1 X X v
Generative Agents (Park et al., 2023) v v v 25 X X v
EMATP (Liu et al., 2022) v v v 2 v X X
Overcooked-Al (Carroll et al., 2019) X v v 2 v v X
HandMeThat (Wan et al., 2022) v v v 2 v X X
DialFRED (Gao et al., 2022) v v v 2 v X X
TEACH (Padmakumar et al., 2022) v v v 2 v X X
CerealBar (Suhr et al., 2019) X X X 2 v X X
LIGHT (Urbanek et al., 2019) v X X 1369 X v v
Diplomacy (Bakhtin et al., 2022) X X X g/ v v X
CUISINEWORLD (Ours) v v v 4+ v v v

Table 1: Comparsion between CUISINEWORLD and other related benchmarks. Multi-task: The benchmark
contains multiple different tasks. Object Interaction: Agents have to manipulate or engage with different
items or environmental elements to achieve certain goals with irreversible actions. Tool Use: Completing tasks
necessitates the use of specific tools by the agents. Maximum Agents: This denotes the upper limit of agents
that can be present in a single experiment. Collaboration: Many tasks mandate teamwork and collaboration
between different agents. Human in-the-loop: The framework allows humans to join the game and collaborate
actively with the agents. Procedural Level Generation: There’s flexibility in adding new tasks, making the
game dynamic and adaptable. *: Notably, even though multiple agents can be present, the second agent is
limited to communicating with the first agent. The second agent cannot interact with the environment in an
active gaming capacity.



I\/I | n d Ag e nt Within the prompt component, there are four distinct sub-components: recipes, general instructions,

inference knowledge, and a one-shot demo.
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Figure 3: Our overview of our MINDAGENT architecture. Planning Skill & Tool Use: The game environment
requires diverse planning skills and tool use to complete tasks. It emits related game information. This module
also converts relevant game data into a structured text format so the LLMs can process it. LLM: The main
workhorse of our infrastructure makes decisions, which is a dispatcher for the multi-agent system. Memory
History: A storage utility that stores relevant information. Action Module, extract actions from text inputs and
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convert them into domain-specific language. Validate DSLs so they don’t cause errors when executing.

There are 2 agents available, so you can execute 2 actions at a time.
Goal: porkMeatcake

t=0

-state:

at(agent@, servingtableo)
at(agentl, servingtabled)
hold(agent@, None)
hold(agentl, None)
inside(storage@, None)
inside(blender@, None)
inside(chopboard@, None)
inside(servingtable@, None)

-action:

Fokok
goto_agent@_storage@
goto_agentl_storage@
Horok

One-shot demo

Recipes. outline the hierarchical procedure for preparing various dishes at the given level. They
specify the necessary ingredients for each intermediate or final product, the appropriate tools re-
quired, and the expected outcome post-cooking.

Instructions. detail the foundational rules of CUISINEWORLD. These instructions delineate the
array of actions agents can undertake within the game and enumerate the characteristics of every tool
available in the current kitchen scenario. Moreover, they inform agents about the base ingredients
retrievable from storage, as well as all potential intermediate products they can procure. Agents are
also explicitly advised to remain cautious about feedback from the environment.

Inference Knowledge. houses insights and helpful hints for the agent. When utilized appropriately,
these hints can guide agents to sidestep potential errors and enhance their collaborative efficiency.

One-shot Demo. presents a step-by-step demonstration of the preparation of a distinct dish, differ-
ent from other dishes at the current level. This demonstration spans several time steps, each of which
is incorporated as part of the prompt. The demonstration illustrates the major procedures for cook-
ing one dish in CUISINEWORLD, including obtaining ingredients, putting ingredients into different
tools, transporting intermediate ingredients, and delivering the final dish to the serving table.



MindAgent

* Multi-agent task allocation

We aim to find valid and optimal task planning, scheduling, and allocations. We define g,,;,, and
cpim as quality and cost, respectively, for allocating agent 7 to work on the sub-task m for the p th
task in the episode. Then the combined utility for the sub-task is:

" Qpim — Cpim, if agent 7 can execute sub-task m for the p th task in the episode
pum —00. otherwise

We define the assignment of sub-task m to agent ¢ as

S 1, agent is assigned to sub-task m for the p th task in the episode
pem 0. otherwise

The goal is to maximize the utility of the episode under a time constraint. Define the execution
time for task m by agent ¢ for the p th task in the episode as 7,,,, and the maximum time allowed
to execute the task as T},.., We can express the task decomposition and assignment problem as
follows:

P N M,

arg max Z Z Z Upim'l)p'hn (2)
v

p=11=1 m=1

Subject to:
Zp Zi Zm TpimUpim < Tmuw
YoiUpim <1 Ym € M,Vp € P
Upim  €1{0,1} Vie N,Yme M,Vpe P

As pointed out by (Korsah et al., 2013), this problem cannot be solved in polynomial time. In this
work, we tackle this problem by using large-language models.

Reformulate g or r in natural language.
e.g. “collect finish”

Prevent bad assignment.
e.g. “agent ids cannot be the same”

Using state-action memory history as rewards are not
Immediately observable



Experiments

Overview. We conduct extensive experiments in CUISINEWORLD. We first introduce the exper-
iment settings and present an analysis of empirical results in CUISINEWORLD. Our experiments
focus on addressing the following research questions:

Q1:
Q2:
Q3:
Q4:
Qs:
Qe6:

How efficiently can the model dispatch multiple agents?

Can the model dispatch agents for dynamic, on-the-fly goals across different tasks?
How do various components of the input prompt influence the model’s performance?
How do other LLLMs perform compared to GPT-4?

To what extent can the existing methods collaborate with human users?

What’s the human perception of collaborating with numerous intelligent agents?

We perform experiments on CUISINEWORLD through OpenAl APIs and anthropic APIs. All GPT-
4 experiments are using gpt-4-0613 model, and all chat-GPT experiments are using gpt-3.5-turbo-
0613. For Llama 2 experiments, we use hugging face inference endpoints Llama-2-70b-chat-hf. We
set the temperature for all experiments to 0.1 following (Wang et al., 2023a). We report the average
results over three episodes.



Experiment 1: LLMS Dispatch Multi-Agents (NPC)

* Collaboration Efficiency

CoS — 1 Z #completed task [Tin.t,(i)] |
M #completed task [Tim’(i)] + F#failed task [Tim’(i)]

1=1

level_2 level 7 level_8 level 9
5 - ) 1.0-

5
task interva |
level 12

10 12 14 16 2
task interva task interval task interva

* LLM dispatcher can coordinate more agents to execute tasks more efficiently.
* LLM dispatcher struggles when there are fewer tasks



Experiment 2: Human and Multi-NPCs with LLMs

Hypotheses. The user study tests the following hypotheses:

e H1: Task productivity. Participants have higher productivity if collaborating with Al agents.

* H2: Task productivity with more agents. Participants have higher productivity if collaborating
with more Al agents.

* H3: Perception of the robot. Participants would have higher perceived task efficiency and have
more fun playing the game due to collaboration.

overall success rate
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(a) Collaboration score We can
tell that the collaboration score is
higher if more agents are collab-
orating with human players, even
though the difference is not signif-
icant.

Perceived assisting

Perceived enjoyment
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(b) Perceived Enjoyment Humans
enjoy the game more if they col-
laborate with the right number of
agents

Perceived dependability
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(d) Perceived Assisting. There is
no significant difference in terms
of human perceptions of helpful-
ness when collaborating with more
agents, even though the task suc-
cess rate is higher.
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(e) Perceived dependability.
When collaborating with more
agents, players depend on the
agents more.

N n o o s
vuman AR Gent+ HUTE e + s + U Bm Agen®

(c) Perceived more fun due to col-
laboration. Players enjoy the game
more because of collaborating with
competent agents.

Perceived predictability

5 point likert scale

ent+Human nts+Human ents+Human

1 Ag 2 Ag
(f) Perceived Predictability. There
is no difference in terms of the
predictability of agents’ behav-
iors when collaborating with more

agents.

3 AgS

Perceived productivity Perceived trust

T
b
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(g) Perceived productivity. Play- (h) Perceived Trust. There is no
ers think collaborating with Al difference in terms of trust when
agents will improve productivity.  collaborating with more agents.

Figure 5: Human Evaluations

Findings. We find significant effects on team collaboration success rate F'(4,55) = 28.11,p <
0.001. Post-hoc comparisons using the Tukey HSD tests revealed that the team of the player with
LLM agents achieves a higher success rate than a human working alone, p < 0.001 across different
numbers of agents, confirming H1. Even though the success rate is generally higher when collab-
orating with more agents, there is no significant effect compared with collaborating with one agent,
collaborating with two agents p = (0.774, or collaborating with three agents p = 0.231. We observe
that human players have more fun playing the game when collaborating with LLM-powered intel-
ligent agents than playing alone, p = 0.0126. Players feel that collaboration with intelligent agents
leads to higher productivity, p = 0.0104, thus confirming H3.



Analysis and Emergent Gaming Abilities

* How do various components of the input prompt influence the model’s performance?

2 agent | GPT-4 | GPT-4 w/ few-step | GPT-4 w/o inference knowledge | GPT-4 w/o feedback

Tin,(1) | 10/26 | 8/26 8/25 4125
T2y | 10/17 | 11/19 9/17 417
Tz | 11/13 | 11/13 10/12 412
Tin,(4) | 12/12 | 9/11 8/9 1/9
o) | 11/11 | 10/10 9/9 5/7
CoS 0.764 | 0.710 0.714 0.311

Table 7: Additional Ablation

* Other LLM’s performance

| 2 agent 3 agent 4 agent

| GPT-4 | Claude-2 | LLaMA | ChatGPT | GPT-4 | Claude-2 | LLaMA | ChatGPT | GPT-4 | Claude-2 | LLaMA | ChatGPT
Toe1) | 10/26 | 3/24 0 0/24 | 12/25 | 5/26 0 0/24 | 16/27 | 9/25 0 0/24
Tm(2) | 10/17 | 3/16 0 0/15 | 14/20 | 4/16 0 0/15 | 16/19 | 4/15 0 0/15
Tme(s) | 11/18 | 3/12 0 0/12 | 13/14 | 3/12 0 0/12 | 15/17 | 4/12 0 0/12
Tog) | 11/13 | 3/9 0 0/9 | 10/10 | 5/11 0 0/9 | 12/13 | 6/11 0 0/9
Ti(s) | 11/11 | 4/6 0 0/6 | 12/12 | 57 0 0/6 | 12/12 | 67 0 0/6
CoS 0.686 0.3125 0 0 0.822 0.372 0 0 0.848 0.473 0 0

Table 6: Performance of Other LLMs on Level 3
* Emergent Capabilities

Yet, despite this limited input, GPT-4’s performance is remarkable. This underscores GPT-4’s im-
pressive emergent zero-shot multi-agent planning capabilities. Beyond simply completing unseen
tasks, GPT-4 also demonstrates adaptability by dynamically prioritizing multiple different tasks as
they arise, emphasizing its emergent multi-task, on-the-fly planning skills.

Emergent Multi-agent Reasoning Capabilities. Referencing Table 8, GPT-4 has the capability to
deploy more agents based on demonstrations of fewer agents. For instance, GPT-4 can effectively
dispatch four agents having only seen demonstrations involving two agents. Moreover, the efficiency
of collaboration is higher as the number of agents increases, spotlighting its emergent collaboration
prowess.



Novel Game Adaptation (Minecraft)

We define the following actions for the multi-agent system in our Minecraft game: 1)
goto (agent, location); 2) killMob (agent, mobType); 3) mineBlock (agent,
blockType); 4) putFuelFurnace (agent, fuelType), to put the item from agent’s in-
ventory to the furnace’s bottom slot. 5) putItemFurnace (agent, itemType), to put the
item from agent’s inventory to the furnace’s top slot; 6) takeOutFurnace (agent), take out the
cooked item from the furnace 7) putInChest (agent, itemType) ;

The state space in Minecraft contains the following: 1) nearby blocks for each agent 2) nearby
entities for each agent. 3) each agent’s inventory 4) items inside the furnace 5) items inside the
chest. 6) human player’s inventory if a human player is involved.

Multi-agent

Human-agent
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Overview
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knowledge llg{ror messlagg: XXX, d
Target: cook soup and deliver... €ase analysis again an 3 5
\ Skill pool: pickup(onion), cook N replan the silll based on I'succeeded at pickup(onion)
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You and Bob have empty hands. | Intention of Sob: ‘pickup(dish)” | |

: | Real behavior of Bob: “pickup(onion)” i
action B
ProAgent memory Bob
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Figure 1: Overview of our proposed ProAgent framework including the coordination task workflow (left) and inner details
of ProAgent pipeline (right). ProAgent commences its operation by translating the initial state into natural language. A large
language model (P1lanner) adeptly analyzes the provided language state in conjunction with historical information stored in
the Memory. This analytical process allows the model to discern the intentions of the teammate and devise a high-level skill for
the agent accordingly. The predicted intention is validated through the Belief Correction mechanism, which involves
comparing it with the ground truth behavior of the teammate agent. In case of skill failure, the Verificator is summoned
to assess the skill’s preconditions and provide a detailed explanation for the encountered issue. Should the need arise, ProAgent
enters into a re-plan loop, initiating a recalibration process. On the other hand, if the skill is deemed viable, the Controller
further dissects it into several executive actions, to be executed within the environment.

LLM agent for cooperative scenarios,
zero-shot coordination problem.

Environment: Overcooked-Al

Demonstrates the remarkable capability
of ProAgent to interpretably analyze the
current scene, explicitly infer teammates’
intentions and dynamically adapt its
behavior accordingly.



Prompt Reflection Loop @ PrOAgent
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* Belief Correction

### Original State

1) Replace the predicted intention with the actual behavior of the teammate.
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Above is the layout of the kitchen: onion dispenser at
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Ianguage_grounded RL ### Language State (Task state)

State: Player 0 holds one onion. Player 1 holds one
< onion. Kitchen states: Pot (2, 0) is empty.




Experiments
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Figure 6: Cross-agent collaborative evaluation: the ZSC performance of ProAgent, COLE, FCP, MEP, PBT, and SP when
paired with all the held-out populations. In each layout, the reward bar represents the average performance of one algorithm
collaborating with all other algorithms, and the error lines represent the standard deviation. The gray and hashed bars indicate
the rewards obtained where the starting positions are switched.
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Baseline AI Agents
Layout P PBT FCP g NEP COLE ProAgent (ours)
Cramped Room 168.5+15.2 1788 +£16.5 196.3+16.8 185+ 15 163.8 £24.1 197.3 +6.1
172.8 £16.1 179.8+£26.8 196+11.9 1782+15.6 169.2+16.8 194.2 +10.5
Asymmetric Advantages 183.3 £27.5 182.24+27.9 185.74+22.7 155.7+63.9 201.3+34.5 228.7 + 23
177.8£24.6 152.3+64.5 167.8+21.3 184+41.8 165.5+33.3 229.8 +21.9
Coordination Ring 122 +£17.2 141.3 £ 28 148.8 +19.4 167.24+22.4 168.8 4 26.1 175.3 £29
133.3£23.7 141.3+£27.5 145.7+17.1 159.3+25.3 158.3+27.1 183 +31.7
Forced Coordination 6.7 £6.7 15.3£17.1 44.7 + 36.4 23.3+19.8 24 +21.8 49.7 £ 33.1
30.2+21.9 61.7 + 46 32.2+£30.2 39.3£16.9 57.3+36.4 31+33.9
Counter Circuit 64.7 & 45.8 64.7 +45.9 58.3 £ 37.5 74.3 +39.1 95.5 4+ 25.2 126.3 +32.3
60.7 +40.8 54.3 +49.1 60 + 38.3 81.5+27.5 100.8 +31.1 128.5 +28.1

Table 1: Performance for all Al agent pairs. Each column represents the average reward and standard error of one algorithm
playing with all others. For each layout, the first row represents the scenario where the agent takes the role of Player 0, and
the Al partner takes the role of Player 1. The second row depicts the vice-versa scenario. The best results for each layout are

highlighted in bold.

Cramped Room

Asymmetric Advantages Coordination Ring Forced Coordination

Figure 2: Performance with human proxy partners. In each
layout, the reward bar represents the average performance of
one algorithm collaborating with the unseen human proxy
partners over 400 timesteps on five different random seeds,
and the error lines represent the standard error. The hashed
bars indicate the rewards obtained where the starting posi-
tions are switched. Zoom in for better visualization.

Counter Circuit



